
Overview
The Xilinx® LogiCORE™ IP FIR Compiler core provides
a common interface for users to generate highly
parameterizable, area-efficient high-performance FIR
filters. 

Features
• AXI4-Stream-compliant interfaces

• High-performance finite impulse response (FIR), 
polyphase decimator, polyphase interpolator, 
half-band, half-band decimator and half-band 
interpolator, Hilbert transform and interpolated 
filter implementations

• Support for up to 256 sets of coefficients, with 2 to 
2048 coefficients per set

• Input data up to 49-bit precision

• Filter coefficients up to 49-bit precision

• Support for up to 64 interleaved data channels

• Support for advanced interleaved data channel 
sequences

• Interpolation and decimation factors of up to 64 
generally and up to 1024 for single channel filters

• Support for multiple parallel datapaths with 
shared control logic

• Online coefficient reload capability

• User-selectable output rounding

• Efficient multi-column structures for all filter 
implementations and optimizations

• Use with Xilinx CORE Generator™ tool and Xilinx 
System Generator for DSP 13.3

LogiCORE IP FIR Compiler v6.3
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LogiCORE IP Facts

Core Specifics

Supported 
Device Family(1)

Kintex-7, Virtex-7, Artix™-7, Zynq™-7000,
Virtex-6, Spartan-6

Supported User 
Interfaces AXI4-Stream

Configuration See Table 12, Table 13

Provided with Core

Documentation Product Specification

Design Files Netlist

Example Design Not Provided

Test Bench VHDL

Constraints File N/A

Simulation 
Model VHDL, Verilog and C Model

Tested Design Tools

Design Entry 
Tools

CORE Generator tool 13.3
System Generator for DSP 13.3

Simulation(1)

Mentor Graphics ModelSim
Cadence Incisive Enterprise Simulator (IES)

Synopsys VCS and VCS MX
ISim

Synthesis Tools N/A

Support

Provided by Xilinx, Inc.

1. For the complete list of supported devices, see the release 
notes for this core.

1. For the supported version of the tools, see the ISE Design 
Suite 13: Release Notes Guide
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LogiCORE IP FIR Compiler v6.3
Functional Description

Overview

A wide range of filter types can be implemented in the Xilinx CORE Generator tool: single-rate, polyphase
decimators and interpolators and half-band decimators and interpolators. Structure in the coefficient set is
exploited to produce area-efficient FPGA implementations. Sufficient arithmetic precision is employed in the
internal datapath to avoid the possibility of overflow.

The conventional single-rate FIR version of the core computes the convolution sum defined in Equation 1, where N
is the number of filter coefficients.

Equation 1

Figure 1 illustrates the conventional tapped delay line realization of this inner-product calculation, and although
the illustration is a useful conceptualization of the computation performed by the core, the actual FPGA realization
is quite different.

One or more time-shared multiply-accumulate (MAC) functional units are used to service the N sum-of-product
calculations in the filter. The core automatically determines the minimum number of MAC engines required to meet
user-specified throughput. 

X-Ref Target - Figure 1

Figure 1: Conventional Tapped Delay Line FIR Filter Representation
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LogiCORE IP FIR Compiler v6.3
Feature Support Matrix

Table 2 shows the classes of filters that are supported for the FIR Compiler core. 

The supported filter configurations are described in separate sections within this document.

Table  1: Feature Support Matrix

Feature

Systolic Multiply-Accumulate Transpose Multiply-Accumulate

Virtex-6,
Virtex-7,

Kintex-7 FPGAs
Spartan-6 FPGAs

Virtex-6,
Virtex-7,

Kintex-7 FPGAs
Spartan-6 FPGAs

Number of Coefficients 2–2048 2–2048 2–2048 2–2048

Coefficient Width(1) 2–49 2–35 2–49 2–35

Data Width(1,2) 2–49 2–35 2–49 2–35

Number of Channels 1–64 1–64 1 1

Parallel Datapaths(3) 1-16 1-16 1-16 1-16

Maximum Rate Change
Single Channel
Multiple Channels

1024
512

1024
512

1024
N/A

1024
N/A

Fractional Rate Support    

Coefficient Reload    

Coefficient Sets 1–256 1–256 1–256 1–256

Output Rounding    

Notes: 
1. Maximum Coefficient Width reduces by one when the Coefficients are signed. Similarly for Maximum Data Width when the Data 

values are signed.
2. The allowable range for the Data Width field in the GUI might reduce further in Virtex-6/Virtex-7/Kintex-7 devices to ensure that the 

accumulator width does not exceed maximum.
3. Maximum Parallel Datapaths reduces to 8 when Coefficient Width or Data Width is greater than 25-bits for 

Virtex-6/Virtex-7/Kintex-7 FPGAs or 18-bits for other families.

Table  2: Filter Configuration Support Matrix

Filter Configuration Supported

Conventional Single-rate FIR 

Half-band FIR 

Hilbert Transform [Ref 3] 

Interpolated FIR [Ref 4] [Ref 5] 

Polyphase Decimator 

Polyphase Interpolator 

Half-band Decimator 

Half-band Interpolator 
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LogiCORE IP FIR Compiler v6.3
Notable Limitations

In conjunction with Table 1 and Table 2, it is important to note some further limitations inherent in the core.

When selecting the Systolic Multiply-Accumulate architecture, the limitations are as follows:

• Fractional Rate filters do not currently exploit coefficient symmetry.

• Non Half-band rate change filters utilizing the advanced channel sequence feature do not exploit coefficient 
symmetry.

When selecting the Transpose Multiply-Accumulate architecture, the limitations are as follows:

• Symmetry is not exploited.

• Multiple interleaved channels are not supported.

Pinout
Figure 2 displays the schematic symbol for the interface pins to the FIR Compiler module.

Filter input data is supplied on the s_axis_data_tdata port (N bits wide, extended if necessary to fit a byte
boundary), subject to the s_axis_data_tvalid and s_axis_data_tready handshake, and filter output
samples are presented on the m_axis_data_tdata port (R bits wide, extended if necessary to fit a byte
boundary), subject to the m_axis_data_tvalid and m_axis_data_tready handshake. The maximum output
width R is the sum of the data bit width N and the bit growth of the filter; see the Output Width and Bit Growth
section for more details. The output width can also be reduced further under user control by truncation or
rounding. See Input and Output DATA Channels for full details of how input and output fields map to the TDATA
port of each channel. 

The aclk signal is the system clock for the core, where the clock rate can be greater than or equal to the input signal
sample frequency. 

X-Ref Target - Figure 2

Figure 2: FIR Compiler Core Pinout 
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LogiCORE IP FIR Compiler v6.3
The ND, RDY, and RFD signals of previous versions have been replaced by AXI4 interfaces. See AXI4-Stream
Considerations for dataflow protocol.

For interleaved data channel implementations an optional field, channel_id, of the m_axis_data_tuser port
specifies which interleaved data channel the current transaction relates to. A similar optional field is available on
the s_axis_data_tuser port. The input value is checked against the core’s internal state and a warning is
generated on the event_s_data_chanid_incorrect port if the value does not match the state of the core. The
channel_id field is C bits wide, where C is the required bit width to represent the maximum channel value.

Where multiple coefficient sets are specified in the .coe file, the CONFIG channel (s_axis_config_t*) is used
to select the active filter set via the fsel field of the s_axis_config_tdata port. The core can be configured to
use a single filter selection for all interleaved data channels or have a unique filter selection for each interleaved
data channel. The fsel field is F bits wide; F is the required bit width to represent the maximum filter set value. See
CONFIG Channel, page 22 for full details.

For implementations utilizing the advanced interleaved data channel sequence feature the CONFIG channel

(s_axis_config_t*) is used to select the active channel sequence via the chanpat field of the
s_axis_config_tdata port. See CONFIG Channel, page 22 for full details.

The RELOAD channel (s_axis_reload_t*) is used to load new filter coefficients into the filter from an external
source. The CONFIG channel (s_axis_config_t*) is then used to enable the use of the newly loaded filter
coefficients. See RELOAD Channel, page 24 and CONFIG Channel, page 22 for full details.

Resetting the core is achieved by driving the aresetn pin which is active low, for a minimum of two cycles; it does
not require the assertion of clock enable (aclken). A clock enable (aclken) pin also optional is available. 

Table 3 defines the FIR filter port names and port functional descriptions. 
Table  3: Core Signal Pinout

Name Direction Optional Description

aclk Input no Rising-edge clock

aclken Input yes Active-high clock enable (optional).

aresetn Input yes Active-low synchronous clear (optional, always take priority over 
aclken). 

s_axis_config_tvalid Input yes TVALID for CONFIG channel. Asserted by external master to 
indicate data is available for transfer.

s_axis_config_tready Output yes TREADY for CONFIG channel. Asserted by core to indicate core 
is ready to accept data.

s_axis_config_tdata[A-1:0] Input yes TDATA for CONFIG channel. See TDATA of CONFIG Channel for 
internal structure and width.

s_axis_config_tlast Input yes TLAST for CONFIG channel. Indicates the last transfer of a 
reconfiguration packet.

s_axis_reload_tvalid Input yes TVALID for RELOAD channel. Asserted by external master to 
indicate data is available for transfer.

s_axis_reload_tready Output yes TREADY for RELOAD channel. Asserted by core to indicate core 
is ready to accept data.

s_axis_reload_tdata Input yes TDATA for RELOAD channel. Conveys the coefficient data 
stream.

s_axis_reload_tlast Input yes TLAST for RELOAD channel. Indicates the last transfer of a 
packet of coefficients.

s_axis_data_tvalid Input no TVALID for input DATA channel. Asserted by external master to 
indicate data is available for transfer.
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LogiCORE IP FIR Compiler v6.3
Parallel Datapaths

Up to 16 parallel datapaths are supported. These parallel datapaths are mapped into s_axis_data_tdata and
m_axis_data_tdata. See Input and Output DATA Channels, page 20 for TDATA internal structure.

CORE Generator Graphical User Interface
The FIR Compiler GUI contains four pages used to configure the core plus four informational/analysis tabs.

s_axis_data_tready Output no TREADY for input DATA channel. Asserted by core to indicate 
core is ready to accept data.

s_axis_data_tdata Input no TDATA for input DATA channel. Conveys the data stream to be 
filtered. See TDATA Structure for internal structure.

s_axis_data_tuser Input yes TUSER for input DATA channel. Conveys ancillary data to be 
passed through the core with latency equal to the input DATA to 
output DATA datapath and or a chan ID field to identify which 
Time Division Multiplexed (TDM) channel the current sample 
belongs to.

s_axis_data_tlast Input yes TLAST for input DATA channel.This optionally indicates the last 
of a cycle of TDM channels or can indicate the end of an arbitrary 
packet in which case it is conveyed to the output with latency 
equal to the main data stream.

m_axis_data_tvalid Output no TVALID for output DATA channel. Asserted by core to indicate 
data is available for transfer.

m_axis_data_tready Input yes TREADY for output DATA channel. Asserted by external slave to 
indicate the slave is ready to accept data.

m_axis_data_tdata Output no TDATA for the output DATA channel. This is the filtered data 
stream. See TDATA Structure for internal structure.

m_axis_data_tuser Output yes TUSER for the output DATA channel. Optionally conveys a user 
field from the input DATA TUSER port and/or a chan ID field to 
identify which TDM channel the current sample belongs to.

m_axis_data_tlast Output yes TLAST for the output DATA channel. Optionally indicates the last 
sample of a cycle of TDM channels (vector framing) or the TLAST 
passed through the core from the input DATA channel (packet 
framing)

event_s_data_tlast_missing Output yes Indicates that the input DATA TLAST was not asserted when 
expected by an internal channel counter.

event_s_data_tlast_unexpected Output yes Indicates that the input DATA TLAST was asserted when not 
expected by an internal channel counter.

event_s_data_chanid_incorrect Output yes Indicates that the chan ID field of the input DATA TUSER port did 
not match the value of an internal counter.

event_s_reload_tlast_missing Output yes Indicates that the RELOAD TLAST was not asserted when 
expected by an internal counter.

event_s_reload_tlast_unexpected Output yes Indicates that the RELOAD TLAST was asserted when not 
expected by an internal counter.

event_s_config_tlast_missing Output yes Indicates that the CONFIG TLAST was not asserted when 
expected by an internal counter.

event_s_config_tlast_unexpected Output yes Indicates that the CONFIG TLAST was asserted when not 
expected by an internal counter.

Table  3: Core Signal Pinout (Cont’d)

Name Direction Optional Description
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LogiCORE IP FIR Compiler v6.3
Tool Tips appear when hovering the mouse over each parameter and a brief description appears, as well as
feedback about how their values or ranges are affected by other parameter selections. For example, the Coefficient
Structure Tool Tip displays the inferred structure when Inferred is selected from the drop-down list. 

Tab 1: IP Symbol

The IP Symbol tab illustrates the core pinout.

Tab 2: Freq. Response 

The Freq. Response tab (Figure 3), the default tab when the CORE Generator software is started, displays the filter
frequency response (magnitude only). The content of the tab can be adjusted to fit the entire window or un-docked
(as shown) into a separate window.  
X-Ref Target - Figure 3

Figure 3: Freq. Response Tab
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LogiCORE IP FIR Compiler v6.3
The frequency response of the currently selected coefficient set is plotted against normalized frequency. Where the
Quantization option is set to Integer Coefficients, there is only a single plot based on the specified coefficient values.
Where the Quantization option has been set to Quantize Only, an ideal plot is displayed based on the provided
values alongside a Quantized plot based on a set of coefficient values quantized according to the specified
coefficient bit width. Where the Quantization option is set to Maximize Dynamic Range, the coefficients are first
scaled to take full advantage of the available dynamic range, then quantized according to the specified coefficient
bit width. The quantized coefficients are summed to determine the resulting gain factor over the provided real
coefficient set, and the resulting scale factor is used to correct the filter response of the quantized coefficients such
that the gain is factored out. The scale factor is reported in the legend text of the frequency response plot and on the
Summary page. See the Coefficient Quantization section for more details.

The filter gain displayed is for a single rate implementation and does not take into account the zero insertion
between output samples in the up-sampling processes in a interpolating filter. Therefore, following the zero
insertion the average filter gain is reduced by the up-sampling rate.

• Set to Display: This selects which of multiple coefficient sets (if applicable) is displayed in the Frequency 
Response Graph.

• Passband Range: Two fields are available to specify the passband range, the left-most being the minimum 
value and the right-most the maximum value. The values are specified in the same units as on the graph x-axis 
(for example, normalized to pi radians per second). For the specified range the passband maximum, minimum 
and ripple values are calculated and displayed (in dB).

• Stopband Range: Two fields are available to specify the stopband range, the left-most being the minimum 
value and the right-most the maximum value. The values are specified in the same units as on the graph x-axis 
(for example, normalized to pi radians per second). For the specified range the stopband maximum value is 
calculated and displayed (in dB).

The user can specify any range for the passband or stopband, allowing closer analysis of any region of the response.
For example, examination of the transition region can be done to more accurately examine the filter roll-off.

Tab 3: Implementation Details

The Implementation Details tab displays Resource Estimation information, core latency, actual calculated
coefficients, selected interleaved data channel sequences and the internal structure of AXI4-Stream TDATA and
TUSER ports.

The number of DSP slices/Multipliers is displayed in addition to a count of the number of block RAM elements
required to implement the design. Usage of general slice logic is not currently estimated. 

It should be noted that the results presented in the Resource Estimation are estimates only using equations that
model the expected core implementation structure. It is not guaranteed that the resource estimates provided in the
GUI match the results of a mapped core implementation.

For some configurations, the number of coefficients calculated by the core might be greater than specified. In this
circumstance, the user can increase the number coefficients used to specify the filter at little or no cost in resource
usage.

The AXI4-Stream Channel Sub-Field Details pane describes fields internal to the AXI4-Stream ports. This pane
allows the user to see how individual fields map to the indices of the compound port as a whole.

The Interleaved Channel Pattern pane displays the enumerated list of channel sequences that have been selected.
The enumerated value is used to select the desired pattern via the chanpat field of the s_axis_config_tdata
port. See CONFIG Channel, page 22 for details of the CONFIG channel.
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LogiCORE IP FIR Compiler v6.3
Tab 4: Coefficient Reload

The Coefficient Reload tab provides the facility to generate re-ordered filter coefficient files for use with the
RELOAD channel. The tab also displays the coefficient reload order.

The coefficient reload order is displayed when “Use Reloadable Coefficients” has been selected and “Display
Reload Order” is checked. This information is also contained in the <component_name>_reload_order.txt
file produced during core generation. See the Coefficient Reload section for more details. 

Reload Coefficients MIF File Generation pane is enabled when “Use Reloadable Coefficients” has been selected.
Reload files can be generated for the coefficients used to specify the filter configuration (“Coefficient Vector” or
“Coefficient File”) or for coefficients specified via the “Reload Coefficient File” parameter. It uses the same COE
format as the “Coefficient File” parameter. See Filter Coefficient Data, page 48 for more details. The reload filter
coefficient characteristics must match those of the coefficients used to specify the filter configuration.

The re-ordered coefficients are output in a multiple binary text files formatted to the width of the
s_axis_reload_tdata port.

The output file names have the following format, given their source:

where x specifies the coefficient set.

Tab 5: C Model

This tab provides details on how to obtain a copy of the bit accurate C model for this core

Filter Specification Screen

The Filter Specification screen is used to define the basic configuration and performance of the filter.

• Component Name: The user-defined filter component instance name.

FIlter Coefficients

• Coefficient Source: Specifies which coefficient input method to use, directly in the GUI via the Coefficient 
Vector parameter or from a .coe file specified by the Coefficient File parameter.

• Coefficient Vector: Used to specify the filter coefficients directly in the GUI. The filter coefficients are specified 
in decimal using a comma delimited list as for the “coefdata” field in the Filter Coefficient Data file. As with 
the .coe file, the filter coefficients can be specified using non-integer real numbers which the FIR Compiler 
quantizes appropriately, given the user requirements. See the Coefficient Quantization section for more details.

• Coefficients File: Coefficient file name. This is the file of filter coefficients. The file has a .coe extension, and the 
file format is described in theFilter Coefficient Data section. The file can be selected through the dialog box 
activated by the Browse.

• Show Coefficients: Selecting this button displays the filter coefficient data defined in the specified Coefficient 
file in a pop-up window.

• Number of Coefficient Sets: The number of sets of filter coefficients to be implemented. The value specified 
must divide without remainder into the number of coefficients derived from the .coe file or Coefficient Vector.

• Number of Coefficients (per set): The number of filter coefficients per filter set. This value is automatically 
derived from the specified coefficient data and the specified number of coefficient sets.

• Use Reloadable Coefficients: When the “Reloadable” option is selected, a coefficient reload interface is 
provided on the core.

Filter Specification Coefficients: <component_name>_rld_src_<x>.txt

Reload Coefficient File: <component_name>_rld_coe_<x>.txt
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LogiCORE IP FIR Compiler v6.3
Filter Specification
• Filter Type: Five filter types are supported: Single-rate FIR, Interpolating FIR, Decimating FIR, Hilbert 

transform and Interpolated FIR. 

• Inferred Coefficient Structure(s): Displays the coefficient structures, that can be supported for the selected 
filter type, detected by the GUI in the specified coefficients. The inferred coefficient structure (the first item in 
the list) can be overridden using the Coefficient Structure parameter later in the GUI. Supported coefficient 
structures are: Non-symmetric, Symmetric, Negative Symmetric, Half-band and Hilbert. 

The combination of Filter Type, Coefficient Structure and Filter Architecture selects the implementation used by the
core.

• Rate Change Type: This field is applicable to Interpolation and Decimation filter types. Used to specify an 
Integer or Fixed Fractional rate change.

• Interpolation Rate Value: This field is applicable to all Interpolation filter types and Decimation filter types for 
Fractional Rate Change implementations. The value provided in this field defines the up-sampling factor, or P 
for Fixed Fractional Rate (P/Q) resampling filter implementations.

• Decimation Rate Value: This field is applicable to the all Decimation and Interpolation filter types for 
Fractional Rate Change implementations. The value provided in this field defines the down-sampling factor, 
or Q for Fixed Fractional Rate (P/Q) resampling filter implementations. 

• Zero Packing Factor: This field is applicable to the interpolated filter only. The zero packing factor specifies the 
number of 0s inserted between the coefficient data specified by the user. A zero packing factor of k inserts k-1 
zeros between the supplied coefficient values.

Channel Specification Screen

Interleaved Channel Specification

• Channel Sequence: This field selects between “Basic” and “Advanced” interleaved data channel sequences. 
The “Basic”, or legacy, implementation processes interleaved data channels starting at channel 0 incrementing 
in steps of 1 to Number of Channels - 1. The “Advanced” implementation can processes interleaved data 
channels in multiple pre-defined sequences. The desired sequences are specified using the Sequence ID List 
parameter. The CONFIG channel is used to select the active channel sequence. See Interleaved Data Channel 
Filters, page 53 for more details.

• Number of Channels: The maximum number of interleaved data channels to be processed by the filter. For 
“Advanced” channel sequences this parameter specifies the channel sequence length, which also specifies the 
maximum number of interleave data channels.

• Select Sequence: This field can be used to select which of the supported channel sequences are to be 
implemented. Selecting “All” populates the Sequence ID List with all the available channel sequences. 
Similarly, “Clear All” removes all the sequences apart from default first channel sequence supported. Selecting 
a specific channel sequence toggles its entry in the Sequence ID List parameter.

• Sequence ID List: A comma delimited list that specifies which channel sequences are implemented by the 
core. The Interleaved Channel Pattern pane of Implementation Tab,Tab 3: Implementation, displays the 
enumerated list of selected patterns. The Select Sequence parameter can be used to populate the list. See 
Interleaved Data Channel Filters, page 53 for details of the supported channel sequences.

Parallel Channel Specification
• Number of Paths: Specifies the number of parallel datapaths the filter is to process. Each parallel datapath is 

extended to a byte boundary, for both the input and output widths selected. The padding can be signed 
extended or set to zero.
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LogiCORE IP FIR Compiler v6.3
Hardware Oversampling Specification 
• Select format: Selects which format is used to specify the hardware oversampling rate, the number of clock 

cycles available to the core to process an input sample and generate an output. This value directly affects the 
level of parallelism in the core implementation and resources used. When “Frequency Specification” is 
selected, the user specifies the Input Sampling Frequency and Clock Frequency. The ratio between these values 
along with other core parameters determine the hardware oversampling rate. When “Sample Period” is 
selected, the user specifies the integer number of clock cycles between input samples.

• Input/Output Sample Period: Integer number of clock cycles between input samples. When the multiple 
channels have been specified, this value should be the integer number of clock cycles between the time 
division multiplexed input sample data stream. When a fixed fractional decimation filter has been specified, 
this parameter specifies the integer number of clock cycles between output samples. Specifying the output 
sample period enables a more efficient use of the available clock cycles.

• Input Sampling Frequency: This field can be an integer or real value; it specifies the sample frequency for one 
channel. The upper limit is set based on the clock frequency and filter parameters such as Interpolation Rate 
and number of channels.

• Clock Frequency: This field can be an integer or real value. The limits are set based on the sample frequency, 
interpolation rate, and number of channels. This field influences architecture choices only; the specified 
clock rate might not be achievable by the final implementation.

Implementation Options Screen

The Implementation Options screen is used to define the coefficient structure to use and to configure the various
datapath and coefficient options.

Coefficient Options
• Coefficient Type: The coefficient data can be specified as either signed or unsigned. When the signed option is 

selected, conventional two’s complement representation is assumed.

• Quantization: Specifies the quantization method to be used. Available options are Integer Coefficients, 
Quantize Only, or Maximize Dynamic Range. 

• The Integer Coefficients option is only available when the filter coefficients have been specified using only 
integer values. 

• The Quantize Only option rounds the provided values to the nearest quantum using a simple rounding 
towards zero algorithm. 

• The Maximize Dynamic Range option scales all coefficients such that the maximum coefficient is equal to 
the maximum representable number in the specified bit width, thus maximizing the dynamic range of the 
filter (with the current implementation, overflow is not possible, as the accumulator width is automatically 
set to accommodate maximum bit growth within the filter). See the Coefficient Quantization section for 
more information.

• Coefficient Width: The bit precision of the filter coefficients. This field can be used with the filter response 
graph to explore the possibilities for more efficient implementation by limiting coefficient bit width to the 
minimum required to meet the user's target specification for the filter. 

• Best Precision Fraction Length: When selected, the coefficient fractional width is automatically set to 
maximize the precision of the specified filter coefficients. See the Best Precision Fractional Length section for 
further information.

• Coefficient Fractional Bits: Specifies the number of coefficient bits that are used to represent the fractional 
portion of the provided filter coefficients. The maximum value it supports is the Coefficient Width value 
minus the required integer bit width. The integer bit width value is static and is automatically determined by 
calculating the integer bit width required to represent the maximum value contained in the provided 
coefficient sets. When the coefficient width is less than the required integer bit width, this field reports zero. 
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LogiCORE IP FIR Compiler v6.3
When the required integer bit width is zero, this parameter can take a value greater than the Coefficient Width. 
See the Coefficient Quantization section for more information. 

• Coefficient Structure: Five coefficient structures are supported: Non-symmetric, Symmetric, Negative 
Symmetric, Half-band and Hilbert. The structure can also be inferred from the coefficient file directly (default 
setting), or specified directly. The inference algorithm only analyses the first 2048 coefficients. Only valid 
structure options, based on analysis of the provided coefficient file, are available for the user to specify directly. 
If Hilbert has been specified as the Filter Type then Hilbert is forced for Coefficient Structure.

Datapath Options
• Input Data Type: The filter input data can be specified as either signed or unsigned. The signed option 

employs conventional two’s complement arithmetic.

• Input Data Width: The precision (in bits) of the filter input data samples.

• Input Data Fractional Bits: The number of Input Data Width bits used to represent the fractional portion of the 
filter input data samples. This field is for information only. It is used in conjunction with Coefficient Fractional 
Bits to calculate the filter Output Fractional Bits value.

• Output Rounding Mode: Specifies the type of rounding to be applied to the output of the filter.

• Output Width: When using Full Precision, this field is disabled and indicates the output precision (in bits) of 
the filter output data samples, including bit growth. When using any other Rounding Mode, this field allows 
the user to specify the desired output sample width.

• Output Fractional Bits: This field reports the number Output Width bits used to represent the fractional 
portion of the filter output samples.

Detailed Implementation Options Screen

The Detailed Implementation Options screen is used to configure various control and implementation options.

• Filter Architecture: Two filter architectures are supported: Systolic Multiply-Accumulate and Transpose 
Multiply-Accumulate.

• Optimization Goal: Specifies if the core is required to operate at maximum possible speed (Speed option) or 
minimum area (Area option). The Area option is the recommended default and normally achieves the best 
speed and area for the design; however in certain configurations, the Speed setting might be required to 
improve performance at the expense of overall resource usage. (This setting normally adds pipeline registers 
in critical paths.). When Advanced interleaved channels have been specified a further two options are 
available: Speed(Control only) and Speed(Data only).

Memory Options 

The memory type for MAC implementations can either be user-selected or chosen automatically to suit the best
implementation options. Choosing “Distributed” can result in shift register implementation where appropriate to
the filter structure. Inappropriate use of forcing the RAM selection to be either “Block” or “Distributed” can lead to
inefficient resource usage. The default “Automatic” mode is recommended for most users.

• Data Buffer Type: Specifies the type of RAM to be used to store data within a MAC element. Users can select 
either “Block” or “Distributed RAM” options, or select “Automatic” to allow the core to choose the memory 
type appropriately.

• Coefficient Buffer Type: Specifies the type of RAM to be used to store coefficients within a MAC element. 
Users can select either “Block” or “Distributed RAM” options, or select “Automatic” to allow the core to 
choose the memory type appropriately.

• Input Buffer Type: Specifies the type of RAM to be used to implement the data input buffer, where present. 
Users can select either “Block” or “Distributed RAM” options, or select “Automatic” to allow the core to 
choose the memory type appropriately.
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• Output Buffer Type: Specifies the type of RAM to be used to implement the data output buffer, where present. 
Users can select either “Block” or “Distributed RAM” options, or select “Automatic” to allow the core to 
choose the memory type appropriately.

• Preference for Other Storage: Specifies the type of RAM to be used to implement general storage in the 
datapath. Users can select either “Block” or “Distributed RAM” options, or select “Automatic” to allow the 
core to choose the memory type appropriately. Because this covers several different types of storage, it is 
recommended that users specify this type of memory directly only if they really need to steer the core away 
from using a particular memory resource (for example, if they are short of block RAMs in their overall design).

DSP Slice Column Options

The GUI displays the number of independent DSP chains, and their length, required to build the specified filter
configuration.

• Multi-column Support: Implementations of large high speed filters might require chaining of DSP slice 
elements across multiple DSP columns. Where applicable (the feature is only enabled for multi-column 
devices), the user can select the method of folding of the filter structure across the multiple columns, which can 
be “Automatic” (based on the selected device for the project) or “Custom” (user specifies the length of each 
column). The Multiple Column Filter implementation section describes the multi-column implementation in 
more detail.

• Device Column Lengths: Displays the column length pattern in a comma delimited list for the selected project 
device.

• Available Column Lengths: Displays the column length pattern available for a single DSP chain. The GUI 
reduces the Device Columns Lengths given the number of independent DSP chains required by the filter 
configuration. The generated column pattern considers the Optimization Goal specified.

• Column Configuration: Specifies the individual column lengths, in a comma delimited list, that implement a 
single DSP chain. When “Automatic” has been selected, the column lengths are determined by the GUI 
starting with the first column in the available column pattern. When “Custom” is selected, the user can specify 
the desired column pattern. The number and length of the columns cannot exceed the available column 
pattern and the column lengths must sum to the DSP chain length. When the available columns have various 
lengths, it might be desirable to skip a particular column; this can be done by specifying a zero column length, 
for example 10,0,22. The specified column configuration does not guarantee that the downstream tools 
place the columns in the desired sequence.

• Inter-column Pipe Length: Pipeline stages are required to connect between the columns (Non-symmetric filter 
implementations only), with the level of pipelining required being dependent upon the required system clock 
rate, the chosen device, and other system-level parameters. Choice of this parameter is always left for the user 
to specify. 

Interface Options Screen

Data Channel Options
• TLAST: TLAST can either be Not Required, in which case the core does not have the port, or Vector Framing, 

where TLAST is expected to denote the last sample of an interleaved cycle of data channels, or Packet Framing, 
where the core does not interpret TLAST, but passes the signal to the output DATA channel TLAST with the 
same latency as the datapath.

• Output TREADY: This field enables the m_axis_data_tready port. With this port enabled, the core 
supports back-pressure. Without the port, back-pressure is not supported, but resources are saved and 
performance is likely to be higher.

• Input FIFO: Selects a FIFO interface for the S_AXIS_DATA channel. When the FIFO has been selected data can 
be transferred in a continuous burst up to the size of the FIFO (default 16) or, if greater, the number of 
interleaved data channels. The FIFO requires additional FPGA logic resources.
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• TUSER Input: The input TUSER port can independently and optionally convey a User Field and/or a Chan ID 
Field, giving four options.

• TUSER Output: The output TUSER port can optionally carry a User Field and/or a Chan ID Field. The 
presence of a User field in this port is coupled to the presence of a User Field in the TUSER input selection, 
because the User Field, if present, is not interpreted by the core, but conveyed from input DATA channel to 
Output Channel with the same latency as the datapath to ease system design.

• User Field Width: range 1 to 256 bits.

See TUSER Options, page 21 of the Input and Output DATA Channels, page 20 for further details.

Configuration Channel Options

The CONFIG channel is used to select the active filter coefficient set. The channel is also used to apply newly reload
filter coefficients. See CONFIG Channel, page 22 for full details.

• Synchronization Mode:

• On Vector: Configuration packets, when available, are consumed and their contents applied when the first 
sample of an interleaved data channel sequence is processed by the core. When the core is configured to 
process a single data channel configuration packets are consumed every processing cycle of the core.

• On Packet: Further qualifies the consumption of configuration packets. Packets are only consumed after 
the core has received a transaction on the S_AXIS_DATA channel where s_axis_data_tlast has been 
asserted.

• Configuration Method

• Single: A single coefficient set is used to process all interleaved data channels.

• By Channel: A unique coefficient set is specified for each interleaved data channel.

Reload Channel Options
• Reload Slots: Range 1 to 256. Specifies the number of coefficient sets that can be loaded in advance. Reloaded 

coefficients are only applied to the core after a configuration packet has been consumed. See RELOAD 
Channel, page 24 and CONFIG Channel, page 22 for more details.

Control Signals

• aclken: Determines if the core has the aclken pin. 

• aresetn: Determines if the core has the aresetn pin. aresetn is active low and it is recommended that when 
asserted, it is asserted for a minimum of 2 clock cycles. 

• Reset data vector: Specifies if aresetn resets the data vector and the control signals or just the control signals. 
Data vector reset requires additional FPGA logic resources. When no data vector reset has been selected an 
additional data_valid field is present in the m_axis_data_tuser bus which can be used as further 
qualification of the core’s output data. See Resetting the Core, page 25 and Input and Output DATA Channels 
TUSER Options, page 21 for more details.

Summary Screen

The Summary screen provides a summary of core options selected. 

Summary: The final page provides summary information about the core parameters selected, which includes
information on the actual number of calculated coefficients, including padding; the inferred or specified coefficient
structure; the additional gain incurred as data passes through the filter due to maximizing the coefficient dynamic
range during quantization; the specified output width along with the full precision width for comparison; the
calculated cycle-latency value; and the latency delta from the previous major revision of the core.
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Using the FIR Compiler IP Core
The CORE Generator software GUI performs error-checking on all input parameters. Resource estimation,
implementation details, and filter analysis are also available.

Several files are produced when a core is generated, and customized instantiation templates for Verilog and VHDL
design flows are provided in the .veo and .vho files, respectively. For detailed instructions, see the CORE Generator
software documentation.

Simulation Models

The core has a number of options for simulation models:

• VHDL behavioral model in the xilinxcorelib library

• VHDL UNISIM-based structural simulation model

• Verilog UNISIM-based structural simulation model

The models required can be selected in the CORE Generator software project options. 

Xilinx recommends that simulations using UNISIM-based structural models are run using a resolution of 1 ps.
Some Xilinx library components require a 1 ps resolution to work properly in either functional or timing simulation.
The UNISIM-based structural simulation models might produce incorrect results if simulated with a resolution
other than 1 ps. See the “Register Transfer Level (RTL) Simulation Using Xilinx Libraries” section in Chapter 6 of
[Ref 11] for more information.

XCO Parameters

Table 4 defines valid entries for the XCO parameters. Parameters are not case sensitive. Default values are displayed
in bold. Xilinx strongly suggests that XCO parameters are not manually edited in the XCO file; instead, use the
CORE Generator software GUI to configure the core and perform range and parameter value checking. The XCO
parameters are helpful in defining the interface to other Xilinx tools.

Table  4: XCO Parameters

XCO Parameter Valid Values

component_name ASCII text using characters: a..z, 0..9 and "_" starting with a letter

CoefficientSource Vector, COE_File

CoefficientVector ASCII text using characters: 0..9, "." and ","

Coefficient_File Valid file path

Coefficient_Sets 1 - 256

Coefficient_Reload false, true

Filter_Type Single_Rate, Interpolation, Decimation, Hilbert, Interpolated

Rate_Change_Type Integer, Fixed_Fractional

Interpolation_Rate 1 - 1024

Decimation_Rate 1 - 1024

Zero_Pack_Factor 1 - 8

Channel_Sequence Basic, Advanced

Number_Channels 1 - 64
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Select_Pattern All, Clear All, plus variable list of options. 
Note: this parameter does not specify the core configuration but is used to help populate 
the Pattern_List parameter.

Pattern_List Comma delimited list of channel sequence IDs. 
See the Advanced section of Interleaved Data Channel Filters for a full list of channel 
sequence IDs.

RateSpecification Frequency_Specification, Sample_Period

SamplePeriod 1 - 10000000

Sample_Frequency 0.000001 - 600.0

Clock_Frequency 0.000001 - 600.0

Coefficient_Sign Signed, Unsigned

Quantization Integer_Coefficients, Quantize_Only, Maximize_Dynamic_Range

Coefficient_Width 1 - 49; Default is 16

BestPrecision true, false

Coefficient_Fractional_Bits 0 - 49

Coefficient_Structure Inferred, Non_Symmetric, Symmetric, Negative_Symmetric, Half_Band, Hilbert

Data_Sign Signed, Unsigned

Data_Width 1 - 49; Default is 16

Data_Fractional_Bits 0 - 49

Number_Paths 1 - 16; Default is 1

Output_Rounding_Mode Full_Precision, Truncate_LSBs, Non_Symmetric_Rounding_Down, 
Non_Symmetric_Rounding_Up, Symmetric_Rounding_to_Zero, 
Symmetric_Rounding_to_Infinity, Convergent_Rounding_to_Even, 
Convergent_Rounding_to_Odd

Output_Width 1 - 89

Filter_Architecture Systolic_Multiply_Accumulate, Transpose_Multiply_Accumulate

Optimization_Goal Area, Speed

Data_Buffer_Type Automatic, Block, Distributed, Not_Applicable

Coefficient_Buffer_Type Automatic, Block, Distributed, Not_Applicable

Input_Buffer_Type Automatic, Block, Distributed, Not_Applicable

Output_Buffer_Type Automatic, Block, Distributed, Not_Applicable

Preference_For_Other_Storage Automatic, Block, Distributed, Not_Applicable

Multi_Column_Support Automatic, Custom

Inter_Column_Pipe_Length 1 - 16; Default is 4

ColumnConfig ASCII text using characters: 0..9 and ","

DATA_Has_TLAST Not_Required, Vector_Framing, Packet_Framing

M_DATA_Has_TREADY false, true

S_DATA_Has_FIFO true, false

S_DATA_Has_TUSER Not_Required, User_Field, Chan_ID_Field, User_and_Chan_ID_Field

M_DATA_Has_TUSER Not_Required, User_Field, Chan_ID_Field, User_and_Chan_ID_Field

Table  4: XCO Parameters (Cont’d)

XCO Parameter Valid Values
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Demonstration Test Bench
When the core is generated using the CORE Generator tool, a demonstration test bench is created. This is a simple
VHDL test bench that exercises the core.

The demonstration test bench source code is one VHDL file: demo_tb/tb_<component_name>.vhd in the
CORE Generator software output directory. The source code is comprehensively commented.

Using the Demonstration Test Bench

The demonstration test bench instantiates the generated FIR Compiler core. Either the behavioral model or the
netlist can be simulated within the demonstration test bench.

• Behavioral model: Ensure that the CORE Generator software project options are set to generate a behavioral 
model. After generation, this creates a behavioral model wrapper named <component_name>.vhd. Compile 
this file into the work library (see your simulator documentation for more information on how to do this).

• Netlist: If the CORE Generator software project options were set to generate a structural model, a VHDL or 
Verilog netlist named <component_name>.vhd or <component_name>.v was generated. If this option was 
not set, generate a netlist using the netgen program, for example:

netgen -sim -ofmt vhdl <component_name>.ngc <component_name>_netlist.vhd

Compile the netlist into the work library (see your simulator documentation for more information on how to do 
this).

Compile the demonstration test bench into the work library. Then simulate the demonstration test bench. View the
test bench's signals in your simulator's waveform viewer to see the operations of the test bench.

The Demonstration Test Bench in Detail

The demonstration test bench performs the following tasks:

• Instantiates the core

• Generates a clock signal

• Drives the core's input signals to demonstrate core features

• Checks that the core's output signals obey AXI4 protocol rules (data values are not checked to keep the test 
bench simple)

• Provides signals showing the separate fields of AXI4 TDATA and TUSER signals

DATA_TUSER_Width Range 1 to 256

S_CONFIG_Sync_Mode On_Vector, On_Packet

S_CONFIG_Method Single, By_Channel

Num_Reload_Slots Range 1 to 256.

Has_ACLKEN false, true

Has_ARESETn false, true

Reset_Data_Vector true, false

Table  4: XCO Parameters (Cont’d)

XCO Parameter Valid Values
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The demonstration test bench drives the core's input signals to demonstrate the features and modes of operation of
the core. An impulse is used as input data in all operations; the corresponding output of the core is therefore the
impulse response of the filter, that is, the filter coefficients.

The operations performed by the demonstration test bench are appropriate for the configuration of the generated
core, and are a subset of the following operations:

• Drive an impulse

• Drive an impulse, demonstrating AXI4 handshaking signals by modifying the input data rate using slave data 
channel TVALID, and modifying the output data rate using master data channel TREADY (if present)

• Drive an impulse, during which deassert clock enable (if present), then assert reset (if present) and drive a new 
impulse

• For multiple paths: drive a set of impulses of different magnitudes on each path

• For multiple channels: drive a set of impulses of different magnitudes on each channel

• For advanced interleaved data channel sequences: select a different channel pattern; drive an impulse on each 
channel

• For multiple filter coefficient sets: select a different coefficient set (a different set for each channel, if 
supported); drive an impulse (on each channel, if there are multiple channels)

• For reloadable coefficients: load a new coefficient set; drive an impulse (on each channel, if there are multiple 
channels)

Customizing the Demonstration Test Bench

It is possible to modify the demonstration test bench to drive the core's inputs with different data or to perform
different operations.

All operations performed by the demonstration test bench to drive the core's inputs are done in the stimuli process.
This process also contains procedures to simplify driving input data. The drive_data procedure drives one or more
input data samples with the specified data, controlling AXI4 signals to adhere to the AXI4 protocol and keep to the
core's configured input sample rate. The drive_impulse procedure drives an impulse input, with enough zero-valued
samples to allow time for the impulse response to emerge on the core's output data channel. To drive input data
other than an impulse, either use the drive_data procedure repeatedly with specific input data values, or copy and
modify the drive_impulse procedure.

The stimuli process is comprehensively commented, to explain clearly what is being done. New data, configuration
and reload operations can be added by copying and modifying sections of this process.

The clock frequency of the core can be modified by changing the CLOCK_PERIOD constant.

System Generator for DSP Graphical User Interface
This section describes each tab of the System Generator GUI and details the parameters that differ from the CORE
Generator software GUI. See CORE Generator Graphical User Interface for detailed information about all other
parameters. 

Tab 1: Filter Specification

The Filter Specification tab is used to define the basic filter configuration as on the Filter Specification Screen of the
CORE Generator software GUI.

• Coefficients: This field is used to specify the coefficient vector as a single MATLAB® software row vector. The 
number of taps is inferred from the length of the MATLAB software row vector. It is possible to enter these 
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coefficients using the MATLAB software FDATool block. Multiple coefficient sets must be concatenated into a 
single vector as described in the Multiple Coefficient Sets section.

Tab 2: Channel Specification
• Hardware Oversampling Specification format: Selects which method is used to specify the hardware 

oversampling rate and determines the level of control and rate abstraction utilized by the core. This value 
directly affects the level of parallelism of the core implementation and resources used.

When “Maximum Possible” is selected, the core uses the maximum oversampling given the sample period of 
the signal connected to s_data_tdata port. The s_data_tvalid handshake signal is abstracted and 
automatically driven by System Generator and the core propagates the data streams sample period.

When “Hardware Oversampling Rate” is selected, the user can specify the oversampling rate relative to the 
input sample period of the core. As with “Maximum Possible” the handshake and sample period are managed 
automatically by System Generator.

When “Sample Period” is selected there is no automatic handshaking, s_data_tvalid is exposed, or rate 
abstraction, all core ports are considered as having a normalized sample period 1. The core clock is connected 
to the system clock. The core must be controlled using the full AXI4-Stream protocol, see AXI4-Stream 
Considerations, page 20 for full details.

• Sample Period: Specifies the input sample period supported by the core.

• Hardware Oversampling Rate: Specifies the hardware oversampling rate to be applied to the core.

See Filter Specification Screen for information about the other parameters on this tab.

Tab 3: Implementation

The Implementation tab is used to define implementation options; see the Implementation Options Screen of the
CORE Generator software GUI for details of all the core parameters on this tab.

• FPGA Area Estimation: See the System Generator documentation for detailed information about this section. 

See the Implementation Options Screen for information about the other parameters on this tab.

Tab 5: Interface

See Detailed Implementation Options Screen for the corresponding CORE Generator software GUI screen.

The TUSER User Field width parameter is abstracted by System Generator and is defined by the signal connected
to the core.

Data vector reset is always selected to ensure the simulation model and implementation remain bit and cycle
accurate.

Core Use through System Generator for DSP
The FIR Compiler core is available through Xilinx System Generator for DSP, a design tool that enables the use of
The MathWorks model-based design environment Simulink® software for FPGA design. The FIR Compiler core is
one of the DSP building blocks provided in the Xilinx blockset for Simulink software. The core can be found in the
Xilinx Blockset in the DSP section. The block is called “FIR Compiler v6.3.” See the System Generator for DSP User
Manual for more information.
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AXI4-Stream Considerations
The conversion to AXI4-Stream interfaces brings standardization and enhances interoperability of Xilinx
LogiCORE IP solutions. Other than general control signals such as aclk, aclken and aresetn and the event
outputs, all inputs and outputs to the FIR Compiler are conveyed via AXI4-Stream channels. A channel consists of
TVALID and TDATA always, plus several optional ports. In the FIR Compiler, the optional ports supported are
TREADY, TLAST and TUSER. Together, TVALID and TREADY perform a handshake to transfer a message, where
the payload is TDATA, TUSER and TLAST. The FIR Compiler operates on the data contained in the input DATA
channel TDATA port (s_axis_data_tdata) and outputs the result in the TDATA field of the output DATA
channel (m_axis_data_tdata). The FIR Compiler optionally uses the TUSER and TLAST fields to indicate the
phase of a cycle of time-multiplexed channels. The core also provides the facility to convey a user field within
TUSER and the TLAST signal from input DATA channel to the output DATA channel with the same latency as for
TDATA. This facility is intended to ease the use of the FIR Compiler in a system. For example, the FIR Compiler can
be used to filter packetized data. In this example, the TLAST has no bearing on the FIR, but the core can be
configured to pass the TLAST of the packetized data channel, saving the system designer the effort of constructing
a bypass path for this information.

For further details on AXI4-Stream Interfaces see [Ref 9] and the [Ref 10].

Basic Handshake

Figure 4 shows the transfer of data in an AXI4-Stream channel. TVALID is driven by the source (master) side of the
channel and TREADY is driven by the receiver (slave). TVALID indicates that the value in the payload fields
(TDATA, TUSER and TLAST) is valid. TREADY indicates that the slave is ready to receive data. When both TVALID
and TREADY are true in a cycle, a transfer occurs. The master and slave set TVALID and TREADY respectively for
the next transfer appropriately. Some channels can be configured to have no TREADY, in which case the channel
behaves as through there was an implicit, permanently asserted TREADY.

Input and Output DATA Channels

The basic operation of the FIR is for samples to enter via the input DATA channel (s_axis_data_t*) and exit via
the output DATA channel (m_axis_data_t*) duly filtered. The output channel optionally supports TREADY
which allows a resource/behavior trade-off. In circumstances where downstream slave can be guaranteed to accept
the maximum bandwidth of the FIR, TREADY can be deselected to save resources. The input DATA channel always
supports TREADY.

X-Ref Target - Figure 4

Figure 4: Data Transfer in an AXI4-Stream Channel
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TREADY and TVALID

All AXI4-Stream channels support TVALID. The input DATA channel also always supports TREADY. The output
channel optionally supports TREADY. Back-pressure from the output channel eventually propagates to the input
DATA channel to ensure that no data is dropped.

TDATA Structure

The input DATA and output DATA channels share a common TDATA structure format, though can have different
bit widths. All parallel datapaths, see Parallel Data Channel Filters, page 61 for more details, are contained in the
TDATA bus, with each path being sign extended to an 8-bit boundary. The extra bits on the input TDATA are not
used by the core.

Figure 5 shows the TDATA structure for a case with 2 parallel paths (data streams). In this case, bit growth is
experienced between input and output. For a path width of 11 bits on input growing to 13 bits on output, the values
of the various bus indices shown in the diagram are as follows: A= 31, B = 26, C=15, D = 10, E = 31, F = 28, G=15, H
= 12.

TLAST Options

On the input DATA channel and output DATA channel, TLAST can optionally be used to indicate the last sample in
a cycle of interleaved data channels. This use is termed ‘vector-based’. The input DATA and output DATA channels
also support a mode in which the TLAST is passed from input to output with latency equivalent to the TDATA
samples. This mode is termed ‘packet-based’ and is intended to ease system design.

TUSER Options

The input DATA channel and output DATA channels optionally support a TUSER field. For each, the TUSER field
can be used to convey a User Field and/or a Channel ID field. When both are selected, they are concatenated, with
Channel ID in the least significant bit positions. When User Field is selected on the input channel it is automatically
selected for the output channel, as this User Field, like ‘packet-based’ TLAST is a facility whereby the User Field is
passed through the core, but subject to the same latency delay as the TDATA path from input to output. This is
intended to ease system design. The User Field has user-selected width.

The Channel ID field has the minimum width required to describe the number of channels in a time-division
multiplex cycle (log2roundup(number_of_channels)), for example. with 13 channels, channel ID is 4 bits wide.

The output DATA channel also includes a Data Valid field when aresetn has been selected without Data vector
reset being selected. This field can be used for additional validation of the m_axis_data_tdata bus. See Resetting
the Core, page 25for more details. The Data Valid field occupies the LSB of m_axis_data_tuser with the other
TUSER fields, when selected, being shifted up the bus.

X-Ref Target - Figure 5

Figure 5: TDATA Structure for Input and Output DATA Channels
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When the core has been configured to implement a rate change the following rules are applied to TUSER and
TLAST.

• When the core is configured with no rate change TUSER and TLAST propagate through the core unmodified.

• When the core is configured to up convert by X the input TUSER and TLAST are duplicated on the last sample 
of the corresponding block of X output samples. TUSER is undefined for the other X-1 output samples.

• When the core is configured to down convert by X the TUSER value for a given output sample is taken from 
the TUSER value of the first input sample of the corresponding X input samples. TLAST is OR’d over X input 
samples with the result being used for the TLAST of the corresponding output sample.

CONFIG Channel

This control channel specifies the filter select value for each (or all) interleaved data channels and the current
channel sequence value. It also activates reloaded filter coefficients.

• When the core has been specified to support multiple filter coefficients, the filter select value selects which 
filter should be used for each of the interleaved data channels.

• When the core has been specified to support advanced channel sequences, the channel pattern value specifies 
which channel sequence is to be used.

• When the core is specified to support reloadable filter coefficients, receipt of a filter configuration packet 
updates to (or switches in) any reloaded filter coefficient sets since the previous update.

Note: When the core is specified to full rate and no rate change, care must be taken to give the filter an opportunity to 
acknowledge/store the reloaded filters. If the Filter Configuration Channel is continuously updated, there is no opportunity to 
store the reloaded filters and the RELOAD channel is blocked when all the reload slots are full. The time required to process 
a single input vector (block of interleaved channels) is sufficient to update the reload filters.

• The channel can be configured to have a packet of length of “Number of Channels” where each transaction in 
the packet specifies the filter select value of the corresponding interleaved channel. The first transaction in the 
packet also includes the channel sequence ID, if required for the core configuration. If the core is configured to 
support configurable channel sequences but not multiple filter sets, then the packet length is 1.

• The channel can also be configured to have a packet length of 1 where the single transaction specifies the filter 
select value for all of the interleaved channels. This transaction also includes the channel pattern value, if 
required for the core configuration.

Blocking Behavior
• The channel is non-blocking to the data channel. The data channel is not halted if no new configuration data is 

present.

• The channel is blocking to the RELOAD channel. When all the reload slots are full the RELOAD channel is 
blocked until a configuration packet is received and processed.

Packet Consumption Rate and Synchronization 

When a complete packet has been received the user can specify the core to synchronize the CONFIG channel to the
input Data channel in two methods:

X-Ref Target - Figure 6

Figure 6: TUSER
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• Vector Synchronization (On Vector): Configuration packets, when available, are consumed and their contents 
used when the first sample of an interleaved data channel sequence is processed by the core. When the core is 
configured to process a single data channel configuration, packets are consumed every processing cycle of the 
core.

• For down sampling (decimation) implementations configuration packets are only consumed on the first 
phase of a down sampling period.

• Packet Synchronization (On Packet): Further qualifies the consumption of configuration packets. Packets are 
only consumed when the core has received a transaction on the S_AXIS_DATA channel where 
s_axis_data_tlast has been asserted. This option ties the rate at which configuration packets are 
consumed to the input DATA channel rather than to the rate at which the configuration packets are provided 
to the core, that is, configuration packets can be queued in advance and then used at a rate controlled by the 
input DATA channel.

TREADY

Inputs to the CONFIG channel are stored in a buffer until consumed. When this buffer is almost full, TREADY is
deasserted in accordance with AXI4-Stream protocol.

TLAST Options

TLAST must be asserted to indicate the last transaction in the configuration packet. If the packet is of length 1 then
TLAST is not required and is disabled. In this case each transaction is considered to be a complete packet. If TLAST
last is incorrectly asserted a warning is reported on the event interface.

TDATA

Each field of the TDATA bus is zero padded to an 8-bit boundary.

Field A = Filter Select; size log2roundup(NUM_FILTS) 

Field B = Channel pattern; log2roundup(NUM_PATTERNS).

X-Ref Target - Figure 7

Figure 7: TDATA structure for CONFIG channel
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RELOAD Channel

This channel is used to sequentially load a new filter. When the core is configured to have multiple filter sets, the
first transaction defines which filter is to be reloaded. At generate time the core is configured to support a number
of reload slots. This defines how many filter sets can be reloaded before a synchronization event occurs and applies
the new filter sets to the core. Consumption of a configuration packet on the CONFIG channel (S_AXIS_CONFIG)
is used to synchronize or update to the newly reloaded filter sets.

The RELOAD channel packet length is derived from the number of coefficients specified at core generation time
and the filter implementation used. See sections Coefficient Reload, page 62 and Tab 4: Coefficient Reload, page 9
for details on how to generate the content for the channel. As with the CONFIG channel, the last sample of the
packet must be qualified by an asserted TLAST. The set of data loaded into the RELOAD channel does not take
action until triggered by a reconfiguration synchronization event as described in CONFIG Channel, page 22.

TREADY

When all the reload filter slots are nearly full, TREADY is deasserted in accordance with AXI4-Stream protocol to
prevent data loss.

TLAST

As with the CONFIG channel, TLAST on the RELOAD channel is associated with two event ports
(event_s_reload_tlast_missing and event_s_reload_tlast_unexpected) which likewise indicate for
a single cycle TLAST missing or TLAST asserted when not expected anomalies respectively.

TDATA

The TDATA bus is zero padded to an 8-bit boundary. As this is an input, the pad bits are ignored.

The following diagrams shows the format and example timing of TDATA into the RELOAD channel.
X-Ref Target - Figure 8

Figure 8: TDATA Format

X-Ref Target - Figure 9

Figure 9: TDATA Example Timing
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Event Interface

The event interface is a collection of individual pins, each of which is asserted for a single clock cycle to give
external notice of an internal event. These events can be considered as errors or ignored by the external system. The
individual event signals are: 

event_s_data_tlast_missing:  enabled when TLAST is set to vector-based for the input DATA channel; this
event signal is asserted on the last transaction of an incoming vector is s_axis_data_tlast is not asserted.

event_s_data_tlast_unexpected: enabled when TLAST is set to vector-based or packet-based when down
converting for the input DATA channel; this event signal is asserted on any transaction when
s_axis_data_tlast asserted unexpectedly.

event_s_data_chanid_incorrect:  enabled when the TUSER mode selects TUSER to have a chan ID field;
this is asserted on every transaction when the s_axis_data_tuser Channel ID field does not match the value
expected by the core.

event_s_config_tlast_missing:  enabled when the CONFIG channel is enabled; this signal is asserted on the
last transaction of an incoming vector if s_axis_config_tlast is not seen asserted.

event_s_config_tlast_unexpected: enabled when the CONFIG channel is enabled, this signal is asserted
when s_axis_config_tlast is seen asserted unexpectedly.

event_s_reload_tlast_missing:  enabled when the RELOAD channel is enabled; this signal is asserted on
the last transaction of an incoming vector if s_axis_config_tlast is not seen asserted.

event_s_reload_tlast_unexpected:  enabled when the RELOAD channel is enabled; this signal is asserted
when s_axis_config_tlast is seen asserted unexpectedly.

Resetting the Core

The aresetn port is an optional active low input port which, when asserted for a minimum of two cycles, forces
the internal control logic to the initialized condition and optionally clears the core’s data vector. Selecting data
vector reset can result in the core using more fabric resources. 

When data vector reset has not been selected no internal data is cleared from the filter memories during the reset
process. The filter output remains dependent on the prior input samples and as a result the m_axis_data_tdata
bus of the behavioral simulation file (rather than a structural simulation file) might not match the generated netlist
until the filter data memory is completely flushed. The data_valid field of the m_axis_data_tuser bus, see
TUSER Options, page 21, indicates when the filter data memory has been completely flushed and can be used as
additional qualification of the m_axis_data_tdata bus.
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Interface Timing

Figure 10 shows the sequence of events from a packet of reload data being written to the RELOAD channel (start of
first arrow), which is triggered for use on the arrival and consumption of a packet on the CONFIG channel (end of
first arrow and start of second arrow), and on to the data stream. 
X-Ref Target - Figure 10

Figure 10: Interface Timing
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Migrating to FIR Compiler v6.3 from Earlier Versions

Updating from FIR Compiler v6.0, v6.1and v6.2

XCO Parameter Changes

Multi-Column Support: “Disabled” is now deprecated. Automatic upgrade replaces this with a value of
“Automatic”.

There are no other XCO parameter, port or latency changes between v6.3, v6.2, v6.1 and v6.0 of the FIR Compiler,
only additional parameters. The additional parameters are: Channel Sequence, Select Pattern and Pattern List. See

CORE Generator Graphical User Interface, page 6 for details.

Updating from FIR Compiler v5.0

XCO Parameter Changes

The CORE Generator core update functionality can be used to update an existing XCO file from v5.0 to FIR
Compiler v6.3, but it should be noted that the update mechanism alone does not create a core compatible with v5.0.
See Instructions for Minimum Change Migration. FIR Compiler v6.3 has additional AXI4-Stream parameters. The
following table shows the changes to XCO parameters from v5.0 to v6.3.

Table  5: XCO Parameter Changes from v5.0 to v6.3

Version v5.0 Version 6.3 Notes

component_name component_name Unchanged

CoefficientSource CoefficientSource Unchanged

CoefficientVector CoefficientVector Unchanged

Coefficient_File Coefficient_File Unchanged

Coefficient_Sets Coefficient_Sets Unchanged

Filter_Type Filter_Type Unchanged

Rate_Change_Type Rate_Change_Type Unchanged

Interpolation_Rate Interpolation_Rate Unchanged

Decimation_Rate Decimation_Rate Unchanged

Zero_Pack_Factor Zero_Pack_Factor Deprecated

Channel_Sequence New to version 6.3. See the Advanced section of 
Interleaved Data Channel Filters, page 53.

Number_Channels Number_Channels Unchanged

Select_Pattern New to version 6.3. See the Advanced section of 
Interleaved Data Channel Filters, page 53

Pattern_List New to version 6.3. See the Advanced section of 
Interleaved Data Channel Filters, page 53.

RateSpecification RateSpecification Unchanged

SamplePeriod SamplePeriod Unchanged

Sample_Frequency Sample_Frequency Unchanged

Clock_Frequency Clock_Frequency Unchanged

Filter_Architecture Filter_Architecture Unchanged

Coefficient_Reload Coefficient_Reload Unchanged

Coefficient_Sign Coefficient_Sign Unchanged
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Quantization Quantization Unchanged

Coefficient_Width Coefficient_Width Unchanged

BestPrecision BestPrecision Unchanged

Coefficient_Fractional_Bits Coefficient_Fractional_Bits Unchanged

Coefficient_Structure Coefficient_Structure Unchanged

Data_Sign Data_Sign Unchanged

Data_Width Data_Width Unchanged

Data_Fractional_Bits Data_Fractional_Bits Unchanged

Number_Paths Number_Paths Unchanged

Output_Rounding_Mode Output_Rounding_Mode Unchanged

Output_Width Output_Width Unchanged

Allow_Rounding_Approximation Deprecated

Registered_Output Deprecated

Optimization_Goal Optimization_Goal Unchanged

Has_SCLR Has_ARESETn Name change. aresetn is active low.

Has_CE Has_ACLKEN Name change.

Has_ND

Deprecated. These options pertain to signals which have 
been replaced in the move to AXI4-Stream interfaces.

Has_Data_Valid

SCLR_Deterministic

UseChan_in_adv

Chan_in_adv

Data_Buffer_Type Data_Buffer_Type Unchanged

Coefficient_Buffer_Type Coefficient_Buffer_Type Unchanged

Input_Buffer_Type Input_Buffer_Type Unchanged

Output_Buffer_Type Output_Buffer_Type Unchanged

Preference_For_Other_Storage Preference_For_Other_Storage Unchanged

Multi_Column_Support Multi_Column_Support Unchanged

Inter_Column_Pipe_Length Inter_Column_Pipe_Length Unchanged

ColumnConfig ColumnConfig Unchanged

DATA_Has_TLAST Pertains to AXI4-Stream interfaces.

M_DATA_Has_TREADY Pertains to AXI4-Stream interfaces.

S_DATA_Has_FIFO Pertains to AXI4-Stream interfaces.

S_DATA_Has_TUSER Pertains to AXI4-Stream interfaces.

M_DATA_Has_TUSER Pertains to AXI4-Stream interfaces.

DATA_TUSER_Width Pertains to AXI4-Stream interfaces.

S_CONFIG_Sync_Mode Pertains to AXI4-Stream interfaces.

S_CONFIG_Method Pertains to AXI4-Stream interfaces.

Num_Reload_Slots Pertains to the coefficient reload feature.

Reset_Data_Vector

Table  5: XCO Parameter Changes from v5.0 to v6.3 (Cont’d)

Version v5.0 Version 6.3 Notes
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For more information on this upgrade feature, see the CORE Generator software documentation.

Port Changes

Table 6 details the changes to port naming, additional or deprecated ports and polarity changes from v5.0 to v6.3.

Table  6: Port Changes from Version 5.0 to Version 6.3

Version 5.0 Version 6.3 Notes

CLK aclk Rename only

CE aclken Rename only

SCLR aresetn Rename and change of sense (now active low)

ND s_axis_data_tvalid Equivalent to s_axis_data_tvalid

FILTER_SEL Replaced by CONFIG channel. See s_axis_config_t*.

COEF_LD Replaced by RELOAD channel. See s_axis_reload_t*.

COEF_WE

COEF_DIN

COEF_FILTER_SEL

RFD s_axis_data_tready

RDY m_axis_data_tvalid

DATA_VALID Deprecated, see s_axis_data_t*

CHAN_IN Deprecated. Function performed by s_axis_data_tuser (chan ID field) or 
s_axis_data_tlast (vector-based).

CHAN_OUT Deprecated. Function performed by m_axis_data_tuser (chan ID field) or 
m_axis_data_tlast (vector-based).

DIN Deprecated. Now exists as a field within s_axis_data_tdata.

DOUT Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_I Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_Q Deprecated. Now exists as a field within m_axis_data_tdata.

DIN_1 Deprecated. Now exists as a field within s_axis_data_tdata.

DIN_2 Deprecated. Now exists as a field within s_axis_data_tdata.

DIN_3 Deprecated. Now exists as a field within s_axis_data_tdata.

DIN_4 Deprecated. Now exists as a field within s_axis_data_tdata.

DIN_5 Deprecated. Now exists as a field within s_axis_data_tdata.

DIN_6 Deprecated. Now exists as a field within s_axis_data_tdata.

DIN_7 Deprecated. Now exists as a field within s_axis_data_tdata.

DIN_8 Deprecated. Now exists as a field within s_axis_data_tdata.

DIN_9 Deprecated. Now exists as a field within s_axis_data_tdata.

DIN_10 Deprecated. Now exists as a field within s_axis_data_tdata.

DIN_11 Deprecated. Now exists as a field within s_axis_data_tdata.

DIN_12 Deprecated. Now exists as a field within s_axis_data_tdata.

DIN_13 Deprecated. Now exists as a field within s_axis_data_tdata.

DIN_14 Deprecated. Now exists as a field within s_axis_data_tdata.

DIN_15 Deprecated. Now exists as a field within s_axis_data_tdata.
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DIN_16 Deprecated. Now exists as a field within s_axis_data_tdata.

DOUT_1 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_I_1 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_Q_1 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_2 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_I_2 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_Q_2 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_3 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_I_3 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_Q_3 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_4 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_I_4 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_Q_4 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_5 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_I_5 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_Q_5 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_6 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_I_6 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_Q_6 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_7 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_I_7 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_Q_7 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_8 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_I_8 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_Q_8 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_9 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_I_9 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_Q_9 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_10 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_I_10 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_Q_10 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_11 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_I_11 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_Q_11 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_12 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_I_12 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_Q_12 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_13 Deprecated. Now exists as a field within m_axis_data_tdata.

Table  6: Port Changes from Version 5.0 to Version 6.3 (Cont’d)

Version 5.0 Version 6.3 Notes
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Latency Changes

The latency of FIR Compiler v6.3 is different compared to v5.0 The update process cannot account for this and
guarantee equivalent performance.

When in Blocking Mode (m_data_tready in use), the latency of the core is variable, so only the minimum possible
latency can be determined. When in Non-Blocking Mode (no m_data_tready), the latency of the core might only

DOUT_I_13 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_Q_13 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_14 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_I_14 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_Q_14 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_15 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_I_15 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_Q_15 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_16 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_I_16 Deprecated. Now exists as a field within m_axis_data_tdata.

DOUT_Q_16 Deprecated. Now exists as a field within m_axis_data_tdata.

s_axis_data_tvalid TVALID for input DATA channel

s_axis_data_tready TREADY for input DATA channel

s_axis_data_tdata TDATA for input DATA channel. Replaces all DIN ports. See TDATA Structure for 
internal structure.

s_axis_data_tuser TUSER for input DATA channel. Optionally replaces CHAN_IN.

s_axis_data_tlast TLAST for input DATA channel. Optionally compared to internal channel counter 
(replacement for CHAN_IN) with discrepancies indicated on event_s_axis_*

s_axis_reload_tvalid TVALID for input RELOAD channel

s_axis_reload_tready TREADY for input RELOAD channel

s_axis_reload_tdata

s_axis_reload_tlast

s_axis_config_tvalid TVALID for input CONFIG channel

s_axis_config_tready TREADY for input CONFIG channel

s_axis_config_tdata

s_axis_config_tlast

m_axis_data_tvalid TVALID for output DATA channel

m_axis_data_tready TREADY for output DATA channel

m_axis_data_tdata TDATA for output DATA channel. Replaces all DOUT ports. See TDATA Structure 
for internal structure.

m_axis_data_tuser TUSER for output DATA channel. Optionally replaces CHAN_OUT.

m_axis_data_tlast TLAST for output DATA channel. Optionally replaces function performed by 
CHAN_OUT.

Table  6: Port Changes from Version 5.0 to Version 6.3 (Cont’d)

Version 5.0 Version 6.3 Notes
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be slightly greater than that for the equivalent configuration of v5.0. See the latency information in the GUI
Summary page.

Instructions for Minimum Change Migration

To configure the FIR Compiler v6.3 to most closely mimic the behavior of v5.0 the translation is as follows:

Parameters

Output TREADY (Data Channel Options): Set to false. Disables back-pressure facility and guarantees fixed latency.

Input FIFO (Data Channel Options): Set to false. Disables the input FIFO on the S_AXIS_DATA channel and
minimizes FPGA logic resources.

Synchronization Mode (CONFIG Channel Options): Set to “On Vector”. This ensures the filter select values is
updated on every processing cycle.

Configuration Method (CONFIG Channel Options): Set to “By Channel” when applicable. This ensures a unique
filter select value can be set for every interleaved data channel.

Reload Slots (RELOAD Channel Options): Set to the number of coefficient sets specified.

Data Vector Reset (Control Signals): Set to false. Minimizes FPGA logic resources and matches FIR Compiler v5.0
reset behavior.

Ports

Input / Output Data Channels

ND is mapped to s_axis_data_tvalid

RFD is mapped to s_axis_data_tready

RDY is mapped to m_axis_data_tvalid

Configuration Channel

FILTER_SEL is mapped to the filter select field of the s_axis_config_tdata bus

Drive s_axis_config_tvalid with the same signal driving s_axis_data_tvalid.

NOTE: For decimation filters s_axis_config_tvalid must be driven at the output rate. Configuration packets
are consumed at the lower output rate and if supplied at the input rate the Configuration Channel FIFO becomes
full and s_axis_config_tready is de-asserted and input packets ignored.

Tie s_axis_config_tlast to 0 and ignore event_s_axis_config_*

Reload Channel

The format of the reload channel has changed such that COEF_FILTER_SEL is now pre-pended to the reload
packet on the s_axis_reload_tdata bus.

COEF_DIN is mapped to s_axis_reload_tdata bus

COEF_WE is mapped to s_axis_reload_tvalid

COEF_LD is mapped to s_axis_reload_tlast but is now asserted at the end of a reload packet
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Core Features

Filter Architectures

Multiply-Accumulate

Figure 11 illustrates a simplified view of a MAC-based FIR utilizing a single MAC engine.

The single implementation is extensible to multi-MAC implementations for use in achieving higher performance
filter specifications (larger numbers of coefficients, higher sample rates, more channels, etc.).

The number of multipliers required to implement a filter is determined by calculating the number of multiplies
required to perform the computation (taking into account symmetrical and half-band coefficient structures and
sample rate changes) and then dividing by the number of clocks available to process each input sample. The
available clock cycles value is always rounded down and the number of multipliers rounded up to the nearest
integer. If there is a non-zero remainder, some of the MAC engines calculate fewer coefficients than others, and the
coefficients are padded with zeros to accommodate the excess cycles. 

The output samples reflect the padding of the coefficient vector; for this reason, the response to an applied impulse
contains a certain number of zero outputs before the first coefficient of the specified impulse response appears at the
output. The core automatically generates an implementation that meets the user-defined performance requirements
based on the system clock rate, the sample rate, the number of taps and channels, and the rate change. The core
inserts one or more multipliers to meet the overall throughput requirements. 

Two MAC architectures are available in the FIR Compiler: one that implements a Systolic filter structure and the
other a Transpose filter structure

X-Ref Target - Figure 11

Figure 11: Single MAC Engine Block Diagram
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Systolic Multiply-Accumulate

Figure 12 illustrates the Systolic Multiply-Accumulate architecture implementing a pipelined Direct-Form filter.

Figure 13 illustrates a multi-MAC implementation for this architecture. 

The architecture is directly supported by the XtremeDSP™ Slice and results in area-efficient and high performance
filter implementations. The structure also extends to exploit coefficient symmetry offering further resource savings.

Transpose Multiply-Accumulate

Figure 14 illustrates the Transpose Multiply-Accumulate architecture implementing a Transposed Direct-Form
filter.

X-Ref Target - Figure 12

Figure 12: Pipelined Direct-Form

X-Ref Target - Figure 13

Figure 13: Systolic Multi-MAC Implementation

X-Ref Target - Figure 14

Figure 14: Transpose Direct-Form
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Figure 15 illustrates a multi-MAC implementation for this architecture.

This architecture is also directly supported by the XtremeDSP Slice. This structure offers a low latency
implementation, and for some configurations can also offer extra resource savings over the Systolic structure. It
does not require an accumulator and can use fewer data memory resources, although it does not exploit coefficient
symmetry.

Filter Structures and Optimizations

Filter Symmetry

The impulse response for many filters possesses significant symmetry. This symmetry can generally be exploited to
minimize arithmetic requirements and produce area-efficient filter realizations. Figure 16 shows the impulse
response for a 9-tap symmetric FIR filter. 

Instead of implementing this filter using the architecture shown in Figure 1, the more efficient signal flow-graph in
Figure 17 can be used. In general, the former approach requires N multiplications and (N-1) additions. In contrast,

X-Ref Target - Figure 15

Figure 15: Transpose Multi-MAC Implementation

X-Ref Target - Figure 16

Figure 16: Symmetric FIR – Odd Number of Terms
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the architecture in Figure 17 requires only [N/2] multiplications and approximately N additions. This significant
reduction in the computation workload can be exploited to generate efficient filter hardware implementations.

Coefficient symmetry for an even number of terms can be exploited as shown in Figure 18. 

Figure 19 shows the impulse response for a negative, or odd, symmetric filter. 

X-Ref Target - Figure 17

Figure 17: Exploiting Coefficient Symmetry – Odd Number of Filter Taps

X-Ref Target - Figure 18

Figure 18: Exploiting Coefficient Symmetry – Even Number of Filter Taps

X-Ref Target - Figure 19

Figure 19: Negative Symmetric Impulse Response
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This symmetry is exploited in a manner similar to that shown in Figure 17 and Figure 18. In this case, the middle
layer of adders are replaced by subtracters, as illustrated in Figure 20. 

Filter coefficient symmetry is inferred by the core GUI from the coefficient definition file. This inferred value can be
overridden by the user. When the structure is inferred, the inferred setting is displayed in the Summary page and in
the ToolTip for the Coefficient Structure field.

Coefficient Padding

When implementing a filter with symmetric coefficients using the Multiply-Accumulate architecture, users must be
aware that the core reorganizes the filter coefficients if required to exploit symmetry, and this might alter the filter
response. This is only necessary if the core is configured such that all processing cycles are not utilized. For
example, when the core has four cycles to process each sample for a 30-tap symmetric response filter, the core pads
the coefficient storage out as illustrated in Figure 21.

X-Ref Target - Figure 20

Figure 20: FIR Architecture Exploiting Negative Symmetry

X-Ref Target - Figure 21

Figure 21: Filter Padding to Facilitate Symmetric Structure Exploitation
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The appended zeroes after the non-zero coefficients do not affect the filter response, but the prepended zero
coefficients do alter the phase response of the filter implementation when compared to the ideal coefficients. There
are two ways to avoid this issue: First, and simplest, the user can force the Coefficient Structure to be
Non-Symmetric. This avoids the issue of prepending zero coefficients to the coefficient vector, and only appended
zeroes are used to pad out the filter response to the required number of cycles. Second, and more efficient, the user
can increase the number of taps implemented by the filter at little or no cost in resource usage. In the previous
example, the filter could process 32 taps in the same time, with the same hardware resources, and with the same
cycle latency as the 30-tap implementation, and the phase response of the 32-tap filter would be unaltered.

The core GUI displays the actual number of coefficients calculated on the Implementation Details tab. Users can use
this information to determine if they can increase the number of coefficients used by their filter definition.

Single-rate FIR Filter

The basic FIR filter core is a single-rate (input sample rate = output sample rate) finite impulse response filter. This
is the simplest of filter types and is the default at the start of parametrization in the CORE Generator software.

Half-band FIR Filter

Figure 22 illustrates the general frequency response for a half-band filter. 

The magnitude frequency response is symmetrical about quarter sample frequency π/2 radians. The sample rate is
normalized to 2π radians/sec. The passband and stopband frequencies are positioned such that 

X-Ref Target - Figure 22

Figure 22: Half-band Filter Magnitude Frequency Response
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The passband and stopband ripple, and  respectively, are equal . These properties are reflected in the
filter impulse response. It can be shown [Ref 5] that approximately half of the filter coefficients are zero for an odd
number of taps, as illustrated in Figure 23 for an 11-tap half-band filter. 

The interleaved zero values in the coefficient data can be exploited to realize an efficient realization, as shown in
Figure 24. 

The half-band filter selection in the compiler is intended for this purpose. This filter is available in the Coefficient
Structure field of the user interface. The user must supply the complete list of filter coefficients, including the 0 value
samples, when using the half-band filter. The filter coefficient file format is discussed in greater detail in the Filter
Coefficient Data section.

Hilbert Transform

Hilbert transformers [Ref 5] are used in a variety of ways in digital communication systems. An ideal Hilbert trans-
form provides a phase shift of 90 degrees for positive frequencies and -90 degrees for negative frequencies. It can be
shown [Ref 5] that the impulse response corresponding to this frequency domain characteristic is odd-symmetric
and has interleaved zeros as shown in Figure 24. Both the alternating zero-valued coefficients and the negative sym-
metry can be utilized to produce an efficient hardware realization. 

A Hilbert transformer accepts a real-valued signal and produces a complex (I,Q) output signal. The quadrature (Q)
component of the output signal is produced by a FIR filter with an impulse response like that shown in Figure 25.
The in-phase (I) component is the input signal delayed by an appropriate amount to compensate for the phase delay
of the FIR process employed for generating the Q output. This is efficiently achieved by accessing the center tap of
the sample history delay of the Q channel FIR filter as shown in Figure 26. In this figure, x(n) is the real-valued input
signal, and yI(n) and yQ(n) are the in-phase and quadrature outputs, respectively.

X-Ref Target - Figure 23

Figure 23: Half-band Filter Impulse Response

X-Ref Target - Figure 24

Figure 24: Half-band Filter Impulse Response
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Figure 27 shows the architecture for a Hilbert transformer that exploits both the zero-valued and the negative sym-
metry characteristics of the impulse response.

Interpolated FIR Filter

An interpolated FIR (IFIR) filter [Ref 4] has a similar architecture to a conventional FIR filter, but with the unit delay
operator replaced by k-1 units of delay. k is referred to as the zero-packing factor. Figure 28 illustrates a N-tap IFIR
filter. This architecture is functionally equivalent to inserting k-1 zeros between the coefficients of a prototype filter
coefficient set. 

X-Ref Target - Figure 25

Figure 25: Hilbert Transformer Impulse Response

X-Ref Target - Figure 26

Figure 26: Hilbert Transformer FIR Filter Realization

X-Ref Target - Figure 27

Figure 27: Hilbert Transformer Exploiting Zero-valued Filter Coefficients and Negative Symmetry

X-Ref Target - Figure 28

Figure 28: Interpolated FIR (IFIR). The Zero-packing Factor is k.
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Interpolated filters are useful for realizing efficient implementations of both narrow-band and wide-band filters. A
filter system based on an IFIR approach requires not only the IFIR but also an image rejection filter. References
[Ref 4] and [Ref 6] provide the details of how these systems are realized, and how to design the IFIR and the image
rejection filters.

The IFIR filter implementation takes advantage of the k-1 zeros in the impulse response to realize an area-efficient
FPGA implementation. The FPGA area required by an IFIR filter is not a strong function of the zero-packing factor. 

The interpolated FIR should not be confused with an interpolation filter. Interpolated filters are single-rate systems
employed to produce efficient realizations of narrow-band filters and, with some minor enhancements, wide-band
filters can be accommodated. There is no inherent rate change when using an interpolated filter – the input rate is
the same as the output rate.

Polyphase Decimator

Figure 29 illustrates the polyphase decimation filter option which implements the computationally efficient M-to-1
polyphase decimating filter. 

A set of N prototype filter coefficients  is mapped to the M polyphase subfilters
according to Equation 2.

The polyphase segments are accessed by delivering the input samples x(n) to their inputs via an input commutator
which starts at the segment index and decrements to index 0. After the commutator has executed one cycle
and delivered M input samples to the filter, a single output is taken as the summation of the outputs from the
polyphase segments. The output sample rate is  where  is the sample rate of the input data stream

.

Observe that each of the polyphase segments is operating at the low output sample rate  (compared to the high
input sample rate ), and a total of  operations is performed per output point. 

X-Ref Target - Figure 29

Figure 29: M-to-1 Polyphase Decimating Filter
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Polyphase Interpolator

Figure 30 illustrates the polyphase interpolation filter option which implements the computationally efficient 1-to-P
interpolation filter. 

A set of N prototype filter coefficients  is mapped to the  polyphase subfilters
according to Equation 2, as in the decimation case.

Each new input sample  engages all of the polyphase segments in parallel. For each input sample delivered to
the filter, output samples, one from each segment, are delivered to the filter output port, as indicated by the
commutator in Figure 30.

The output sample rate is  where  is the sample rate of the input data stream .
Observe each of the polyphase segments operating at the low input sample rate  (compared to the high output
sample rate ) and a total of  operations performed per output point.

Polyphase Interpolator Exploiting Symmetric Pairs

The symmetric pairs technique [Ref 8] is used to exploit coefficient symmetry when implementing an Interpolation
filter in the Systolic Multiply-Accumulator architecture. When P polyphase subfilters are generated from
symmetric filter coefficients, not all the subfilters contain a set of coefficients that are themselves symmetric. The
symmetric pairs technique observes that adding and subtracting two corresponding non-symmetric phases
produces two new phases containing symmetric coefficients.

The following example demonstrates this technique for a 15-tap interpolate by 3 filter. The filter coefficients: 

a, b, c, d, e, f, g, h, g, f, e, d, c, b, a produce the following subfilters:

h0 = a, d, g, f, c

h1 = b, e, h, e, b

h2 = c, f, g, d, a

Subfilters h0 and h2 are not symmetric. Applying the symmetric pairs technique produces the following subfilters:

h0 = a+c, d+f, d,g, f+d, c+a

h1 = b, e, h, e, b

h2 = c-a, f-d, g-g, d-f, a-c

Now both h0 and h2 are symmetric with h2 being negative symmetric. The filter can now be implemented utilizing
symmetry, giving the associated resource savings. The output from subfilters h0 and h2 must be added and

X-Ref Target - Figure 30

Figure 30: 1-to-P Polyphase Interpolator

h0(n)

h1(n)

hP-3(n)
x(n)

hP-2(n)

hP-1(n)

y(n)

a0 a1 … aN 1–, , , P
h0 n( ) h1 n( ) … hp 1– n( ), , ,

x n( )
P

′f s = fs P′f s f s x n( ) n, 0 1 2 …, , ,=
fs

′fs N
DS795 October 19, 2011 www.xilinx.com 42
Product Specification

http://www.xilinx.com


LogiCORE IP FIR Compiler v6.3
subtracted and then scaled by a factor of 0.5 to produce the original filter output. Figure 31 illustrates the resulting
structure. 

Note: For some configurations of the an extra XtremeDSP Slice is required to implement the recombination of the phases.

Note: When interpolating by 2 with an odd number of symmetric coefficients, this technique is not required as the resulting 
polyphase subfilters are symmetric.

Coefficient Padding

As with the general symmetric filter case, if the combination of rate and number of filter taps results in a subfilter
which is not fully populated with coefficients, the reorganization of the filter coefficients results in a change in the
phase response of the filter. The impulse response is shifted by a number of output samples as a result. In the 14 tap,
interpolate by 4 case, padding a zero coefficient to the front of the coefficient response would be required to align
the phases such that symmetry can be exploited, resulting in a smaller implementation, but this results in a different
phase response for the filter. The methods to avoid this change in response, if such a change cannot be
accommodated in the user’s application system, are also similar to the general symmetry case; the user can either
force non-symmetric structure implementation or make use of the extra coefficients which can be supported in the
structure. Figure 32 illustrates several example cases in and is extensible to larger filters.

X-Ref Target - Figure 31

Figure 31: Symmetric Pairs
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Half-band Decimator

The half-band decimator is a polyphase filter with an embedded 2-to-1 down-sampling of the input signal.
Figure 33 illustrates the structure. 

The filter is very similar to the polyphase decimator described in Polyphase Decimator with the decimation factor
set to M=2. However, there is a subtle difference in the implementation that makes the half-band decimator a more
area-efficient 2-to-1 down-sampling filter when the frequency response reflects a true half-band characteristic.

The frequency and time response of a half-band filter are shown in Figure 22 and Figure 23, respectively. Observe
the alternating zero-valued coefficients in the impulse response. Figure 33 details a 7-tap half-band polyphase filter
when the coefficients are allocated to the two polyphase segments and  shown in Figure 33. Figure 34
(a) is the filter impulse response ( ). Figure 34 (b) provides a detailed illustration of the polyphase
subfilters and shows how the filter coefficients are allocated to the two polyphase arms. 

X-Ref Target - Figure 32

Figure 32: Filter Padding to Facilitate Symmetric Pairing

X-Ref Target - Figure 33

Figure 33: Half-band Decimation Filter
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In the bottom arm, the only non-zero coefficient, is the center value of the impulse response  Figure 34
(c) shows the optimized architecture when the redundant multipliers and adders are removed. The final structure
has a reduced computation workload in contrast to a more general 2:1 down-sampling filter. 

The number of multiply-accumulate (MAC) operations required to compute an output sample has been lowered by
a factor of approximately two. In this figure, the high density of zero-valued filter coefficients is exploited in the
FPGA realization to produce a minimal area implementation.
X-Ref Target - Figure 34

Figure 34: 7-Tap Half-band Decimation Filter
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Half-band Interpolator

Just as the half-band decimator is an optimized version of the more general polyphase decimation filter, the
half-band interpolator is a special case of a polyphase interpolator. Figure 35 displays the half-band interpolator. 

The coefficient set for a true half-band interpolator is identical to that of a half-band decimator with the same
specifications. The large number of zero entries in the impulse response is exploited in exactly the same manner as
with the half-band decimator to produce hardware-optimized half-band interpolators. The process is presented in
Figure 36. Figure 36(a) is the impulse response, Figure 36(b) shows the polyphase partition, and Figure 36(c) is the
optimized architecture that has taken full advantage of the 0 entries in the coefficient data. 

The high density of zero-valued filter coefficients is exploited in the FPGA realization to produce a minimal area
implementation.

X-Ref Target - Figure 35

Figure 35: Half-band Interpolation Filter

X-Ref Target - Figure 36

Figure 36: 7-Tap Half-band Interpolation Filter
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Small Non-zero Even Terms in a Half-band Filter Impulse Response

Certain filter design software can result in small non-zero values for the odd terms in the half-band filter impulse
response. In this situation, it can be useful to force these values to 0 and re-evaluate the frequency response to assess
if it is still acceptable for the intended application. If the odd terms are not identically zero, the hardware
optimizations described previously are not possible. If the small non-zero value terms cannot be ignored, the
general polyphase decimator or interpolator described in Polyphase Decimator and Polyphase Interpolator, using
a rate change of two, is more appropriate.

Fixed Fractional Rate Resampling Filters

FIR filters that implement resampling of a data stream at a fixed fractional rate P/Q, where P and Q are integers up
to 64, are available for the Systolic Multiply-Accumulate architecture. In Figure 37, the operation of an interpolation
filter with interpolation rate P=5 is contrasted conceptually with the operation of a fixed fractional rate filter with
rate P/Q=5/3.

The normal (integer rate) interpolator passes the input sample to all P phases and then produces an output from
each of the phase arms of the polyphase filter structure. In the fractional rate version, the output is taken from a
phase arm which varies according to a stepping sequence with step size Q.

Figure 38 illustrates a similar conceptual method for implementing fractional rate decimators. The integer
decimation rate for the left-hand diagram is Q=5, while the fractional-rate illustrated on the right is P/Q=3/5. 

X-Ref Target - Figure 37

Figure 37: Interpolation Filters for Integer and Fractional Rates

X-Ref Target - Figure 38

Figure 38: Decimation Filters for Integer and Fractional Rates
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The integer rate decimator passes the input samples in sequence to each of the Q phase arms in turn, with the data
being shifted through the filter, and the output is generated from the summation of the outputs from each phase
arm of the polyphase filter. For the fractional rate implementation, the filter passes the input samples to phases in a
stepping sequence based on a step size of P, with zero samples being placed into the skipped phases. The
summation across the various phase arms remains the same, but is based on fewer actual calculations. The
implementation details differ somewhat from these conceptual illustrations, but the resulting behavior of the filter
is the same. Symmetry is not currently exploited when using the fractional rate structures.

Filter Coefficient Data

The filter coefficients are supplied to the FIR Compiler using a coefficient file with a .coe extension. This is an ASCII
text file with a single-line header that defines the radix of the number representation used for the coefficient data,
followed by the coefficient values themselves. This is shown in Figure 39 for an N-tap filter.

The filter coefficients can be supplied as integers in either base-10, base-16, or base-2 representation. This
corresponds to coefficient_radix=10, coefficient_radix=16, and coefficient_radix=2 respectively. Alternatively, the
coefficients can be entered as real numbers (specified to a minimum of one decimal place) in base-10 only. If the user
enters signed negative symmetric hexadecimal coefficients, each value should be sign-extended to the boundary of
the most significant nibble or hex character. This ensures that coefficient structure inference can be performed
correctly (this includes Hilbert transform filter types, which are also negative symmetric).

The coefficient values can also be placed on a single line as shown in Figure 40.

Single-rate FIR

The coefficient file for the single-rate FIR filter is straightforward and consists of a one-line header followed by the
filter coefficient data. For example, the filter coefficient file for an 8-tap filter using a base-10 representation for the
coefficient values is shown in Figure 41:

X-Ref Target - Figure 39

Figure 39: Filter Coefficient File Format

X-Ref Target - Figure 40

Figure 40: Filter Coefficient File Format – Coefficient Data on a Single Line

X-Ref Target - Figure 41

Figure 41: Filter Coefficient File – 8-Tap Filter, Base-10 Coefficient Values

radix=coefficient_radix;
coefdata=
a(0),
a(1),
a(2),
….
a(N-1);

radix=coefficient_radix;
coefdata=a(0),a(1),a(2),...,a(N-1);

radix=10;

coefdata=20,-256,200,255,255,200,-256,20;
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Irrespective of the filter possessing positive or negative symmetry, the coefficient file should contain the complete
set of coefficient values. The filter coefficient file for the non-symmetric impulse response shown in Figure 42 is
presented in Figure 43. 

The coefficient file for the negative-symmetric filter characterized by the impulse response in Figure 44 is shown in
Figure 45. 

X-Ref Target - Figure 42

Figure 42: Non-symmetric Impulse Response

X-Ref Target - Figure 43

Figure 43: Coefficient File for the Non-symmetric Impulse Response

X-Ref Target - Figure 44

Figure 44: Negative Symmetric Impulse Response

X-Ref Target - Figure 45

Figure 45: Coefficient File for the Negative Symmetric Impulse Response
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Half-band Filter

As previously described, every second filter coefficient for a half-band filter with an odd number of terms is zero.
When specifying the filter coefficient data for this filter class, the zero value entries must be included in the
coefficient file. For example, the filter coefficient file that specifies the filter impulse response in Figure 46 is shown
in Figure 47. 

The filter coefficient set is parsed by the FIR Compiler. If either the alternating zero entries are absent or the
coefficient set is not even-symmetric, this condition is flagged as an error and the filter is not generated. A dialog
box is presented to indicate the issue under these circumstances.

Technically, the zero-valued entries for a half-band filter can occur at the filter impulse response extremities as
shown in Figure 48. However, observe that these values do not contribute to the result.

This condition is detected when the filter is specified. If the number of taps is such that the zero-valued coefficients
form the first and last entry of the impulse response, the filter length is reported as an invalid value. The number of
taps N for a half-band filter must obey N=3 + 4n, where n=0,1,2,3,…. For example, a half-band filter can have 11, 15,
19, and 23 taps, but not 9, 13, 17, or 21 taps.

Hilbert Transform

The impulse response for a 10-term approximation to a Hilbert transformer is shown in Figure 49. The odd-symme-
try and zero-valued coefficients are both exploited to generate an efficient FPGA realization. The coefficient data file
for the Hilbert transform must contain the zero-valued entries. For example, the .coe file corresponding to Figure 49
is shown in Figure 50.

X-Ref Target - Figure 46

Figure 46: 11-Tap Half-band Filter Impulse Response

X-Ref Target - Figure 47

Figure 47: Coefficient File for the Half-band Filter Impulse Response

X-Ref Target - Figure 48

Figure 48: 9-Tap Half-band Filter Impulse Response
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In practice, some optimization methods used for designing a Hilbert transform can lead to the presence of small
even-numbered coefficients. If the Hilbert Transform filter class is used in the FIR Compiler, these terms must be
forced to zero by the user. 

Just like the half-band filter, the zero-valued entries for a Hilbert transformer can occur at the filter impulse
response extremities. However, these values do not contribute to the result.

This condition is detected when the filter is specified. If the number of taps is such that the zero-valued coefficients
form the first and last entry of the impulse response, the filter length is reported as an invalid value. The number of
taps N for a Hilbert transformer must obey N=3 + 4n, where n=0,1,2,3,…. For example, a Hilbert transform filter
can have 11, 15, 19, and 23 taps, but not 9, 13, 17, or 21 taps.

Interpolated Filter

A previous section explained that an IFIR filter is similar to a conventional FIR, but with the unit delay operator
replaced by k-1 units of delay. k is referred to as the zero-packing factor. One way to realize this substitution is by the
insertion of k-1 zeros between the coefficient values of a prototype filter. When specifying an IFIR architecture, the
full set of prototype coefficients is supplied in the coefficient file, without the zeros implied by the zero-packing fac-
tor. The zero-packing factor is defined through the filter user interface. For example, consider the filter coefficient
data in the .coe file shown in Figure 51.

X-Ref Target - Figure 49

Figure 49: Hilbert Transform Impulse Response

X-Ref Target - Figure 50

Figure 50: Coefficient File for the Hilbert Transformer Impulse Response

X-Ref Target - Figure 51

Figure 51: Prototype Coefficient Data for IFIR Example
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radix=10;
coefdata=-819,0,-1365,0,-4096,0,4096,0,1365,0,819;

radix=10;
coefdata=-200,1200,2047,1200,-200;
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If a zero-packing factor of k=2 is specified, the equivalent filter impulse response is shown in Figure 52.

If the zero-packing factor is changed to k=3, the impulse response is as shown in Figure 53.

These examples use a symmetrical prototype impulse response; this is not a restriction of the filter core. The proto-
type filter coefficient set can be symmetrical, non-symmetrical, or negative-symmetric.

Multiple Coefficient Sets

For multiple coefficient filters, a single .coe file is used to specify the coefficient sets. Each coefficient set should be
appended to the previous set of coefficients. 

For example, if a 2-coefficient set, 10-tap symmetric filter was being designed and coefficient set #0 was: coef data
= -1, -2, -3, 4, 5, 5, 4, -3, -2, -1;

and coefficient set #1 was: 

coefdata = -9, -10, -11, 12, 13, 13, 12, -11, -10, -9;

then the .coe file for the entire filter would be:

radix = 10;

coefdata = -1, -2, -3, 4, 5, 5, 4, -3, -2, -1, -9, -10, -11, 12, 13, 13, 12, -11, -10, -9;

All coefficients sets in a multiple set implementation must exhibit the same symmetry. For example, if even one set
of a multi-set has non-symmetric coefficient structure, then all sets are implemented using that structure. All
coefficient sets must also be of the same vector length. If one coefficient set has fewer coefficients, it must be zero
padded – either appended with zeros when non-symmetric or prepended and appended with an equal number of
zeros when symmetric. See the Coefficient Padding section for further information.

X-Ref Target - Figure 52

Figure 52: Equivalent IFIR Impulse Response for the Coefficient Data Shown in Figure 51 
with a Zero-packing Factor k=2

X-Ref Target - Figure 53

Figure 53: Equivalent IFIR Impulse Response for the Coefficient Data Shown in Figure 51 
with a Zero-packing Factor k=3
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Coefficient Specification Using Non-integer Real Numbers

As indicated previously, the user can specify the coefficient values as non-integer real numbers, with the radix set
to 10. For example:

radix = 10;

coefdata = 0.08659436542927, 0.00579513928555, -0.06734424313287, -0.04031582111240;

The coefficients are then quantized by the core to produce the binary coefficient values used in the filter, based on
the user’s specified coefficient bit width. This allows the user to supply floating-point values derived from a chosen
filter design tool and explore the costs and benefits between performance and resource usage by altering the
coefficient bit width and observing the alteration in the quantified frequency response in comparison to the ideal
response. The basic quantization function is selected by setting the Quantization field to Quantize_Only. See the
Coefficient Quantization section for further details.

The integer values used in the filter implementation can be determined by examining the main core MIF file
(<component_name>.mif) which is generated in the CORE Generator software project directory. The MIF file is
always in binary format. 

Interleaved Data Channel Filters

The FIR Compiler core provides support for processing multiple input sample streams using the same
implementation. Each input stream is filtered using the same filter configuration (rate change, etc.) using the
currently selected filter coefficient set.

In many applications, the same filter must be applied to several data streams. A common example is the simple
digital down converter shown in Figure 54. Here a complex base-band signal is applied to a
matched filter M(z). The in-phase and quadrature components are processed by the same filter.

One solution to this issue is to employ two separate filters; however, this can waste logic resources. A more efficient
design can be realized using a filter architecture that shares logic resources between multiple time division
multiplexed (TDM) sample streams. As more channels are processed by the core, the sample throughput is
commensurately reduced. For example, if the sample rate for a single-channel filter is fs, a two-channel version of
the same filter processes two sample streams, each with a sample rate of fs/2. A three-channel version of the filter
processes three data streams and supports a sample rate of fs/3 for each of the streams.

A multichannel filter implementation is very efficient in resource utilization. A filter with two or more channels can
be realized using a similar amount of logic resources to a single-channel version of the same filter, with
proportionate increase in data memory requirements. The trade-off that needs to be addressed when using
multichannel filters is one of sample rate versus logic requirements. As the number of channels is increased, the

X-Ref Target - Figure 54

Figure 54: Digital Down Converter

x n( ) xI n( ) jxQ n( )+=
DS795 October 19, 2011 www.xilinx.com 53
Product Specification

http://www.xilinx.com


LogiCORE IP FIR Compiler v6.3
logic area remains approximately constant, but the sample rate for an individual input stream decreases. The
number of channels supported by a filter core is specified in the filter customization GUI.

The FIR Compiler supports two multichannel implementation: Basic and Advanced.

Basic

The basic (or legacy) implementation processes interleaved data channels sequentially; channel 0, channel 1,
channel 2, ..., channel N-1, where N = Number of Channels. This implementation uses minimal resources.

Advanced

The advanced implementation provides a list of predefined interleaved data channel sequences, or patterns, from
which multiple patterns can be selected during core customization. The specified patterns can then be selected
during core operation using the CONFIG Channel.

When the core is configured to support one channel with a sample frequency of fS the same hardware resources
(XtremeDSP Slice and Memory) can support two channels with a sample frequency of fS/2, 4 channels with a
sample frequency of fS/4 or 1 channel with a sample frequency fS/2 and 2 channels with a sample frequency fS/4.
The Advanced implementation supports each of these configurations with an associated interleaved channel
sequence that can then be selected, dynamically, during core operation via the CONFIG Channel.

Table 7 list all the supported interleaved channel patterns. The full pattern list is also displayed on the CORE
Generator Graphical User Interface.

Although the hardware resources (XtremeDSP Slice and Memory) remain the same as the equivalent Basic
implementation the Advanced Implementation requires additional logic resources. For the patterns highlighted in
Table 7 the memory requirements might also increase and further logic resources might be required.

Table  7: Advanced Interleaved Data Channel Patterns

No.
Chans.

Seq.
ID Description Interleaved Channel Pattern

4 P4-0 1 Channel at fs 0 0 0 0

4 P4-1 2 Channels at 1/2fs 0 1 0 1

4 P4-2 1 Channel at 3/4fs,
1 Channel at 1/4fs

0 0 0 1

4 P4-3 1 Channel at 1/2fs,
2 Channels at 1/4fs

0 1 0 2

4 P4-4 4 Channels at 1/4fs 0 1 2 3

6 P6-0 1 Channel at fs 0 0 0 0 0 0

6 P6-1 2 Channels at 1/2fs 0 1 0 1 0 1

6 P6-2 1 Channel at 2/3fs,
1 Channel at 1/3fs

0 0 0 0 1 1

6 P6-3 3 Channels at 1/3fs 0 1 2 0 1 2

6 P6-4 1 Channel at 2/3fs,
2 Channels at 1/6fs

0 0 0 0 1 2

6 P6-5 1 Channel at 1/2fs,
3 Channels at 1/6fs

0 1 0 2 0 3

6 P6-6 2 Channels at 1/3fs,
2 Channels at 1/6fs

0 1 2 0 1 3

6 P6-7 1 Channel at 1/3fs,
3 Channels at 1/6fs

0 1 2 0 3 4

6 P6-8 6 Channels at 1/6fs 0 1 2 3 4 5
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8 P8-0 1 Channel at fs 0 0 0 0 0 0 0 0

8 P8-1 1 Channel at 3/4fs,
1 Channel at 1/4fs

0 0 0 0 0 0 1 1

8 P8-2 2 Channels at 1/2fs 0 1 0 1 0 1 0 1

8 P8-3 1 Channel at 3/4fs,
2 Channels at 1/8fs

0 0 0 0 0 0 1 2

8 P8-4 1 Channel at 1/2fs,
2 Channels at 1/4fs

0 1 0 2 0 1 0 2

8 P8-5 4 Channels at 1/4fs 0 1 2 3 0 1 2 3

8 P8-6 1 Channel at 1/2fs,
1 Channel at 1/4fs,
2 Channels at 1/8fs

0 1 0 2 0 1 0 3

8 P8-7 2 Channels at 3/8fs,
2 Channels at 1/8fs

0 1 0 1 0 1 2 3

8 P8-8 1 Channel at 1/2fs,
4 Channels at 1/8fs

0 1 0 2 0 3 0 4

8 P8-9 3 Channels at 1/4fs,
2 Channels at 1/8fs

0 1 2 3 0 1 2 4

8 P8-10 2 Channels at 1/4fs,
4 Channels at 1/8fs

0 2 1 3 0 4 1 5

8 P8-11 1 Channel at 1/4fs,
6 Channels at 1/8fs

0 1 2 3 0 4 5 6

8 P8-12 8 Channels at 1/8fs 0 1 2 3 4 5 6 7

12 P12-0 1 Channel at fs 0 0 0 0 0 0 0 0 0 0 0 0

12 P12-1 2 Channels at 1/2fs 0 1 0 1 0 1 0 1 0 1 0 1

12 P12-2 1 Channel at 2/3fs,
1 Channel at 1/3fs

0 0 0 0 0 0 0 0 1 1 1 1

12 P12-3 1 Channel at 3/4fs,
1 Channel at 1/4fs

0 0 0 0 0 0 0 0 0 1 1 1

12 P12-4 1 Channel at 2/3fs,
2 Channels at 1/6fs

0 0 0 0 0 0 0 0 1 2 1 2

12 P12-5 1 Channel at 1/2fs,
2 Channels at 1/4fs

0 1 0 2 0 1 0 2 0 1 0 2

12 P12-6 3 Channels at 1/3fs 0 1 2 0 1 2 0 1 2 0 1 2

12 P12-7 1 Channel at 1/2fs,
3 Channels at 1/6fs

0 1 0 2 0 3 0 1 0 2 0 3

12 P12-8 2 Channels at 1/3fs,
2 Channels at 1/6fs

0 1 2 0 1 3 0 1 2 0 1 3

12 P12-9 4 Channels at 1/4fs 0 1 2 3 0 1 2 3 0 1 2 3

12 P12-10 1 Channel at 2/3fs,
4 Channels at 1/12fs

0 0 0 0 0 0 0 0 1 2 3 4

12 P12-11 1 Channel at 1/2fs,
2 Channels at 1/6fs,
2 Channels at 1/12fs

0 1 0 2 0 3 0 1 0 2 0 4

12 P12-12 2 Channels at 1/3fs,
1 Channel at 1/6fs,
2 Channels at 1/12fs

0 1 2 0 1 3 0 1 2 0 1 4

Table  7: Advanced Interleaved Data Channel Patterns (Cont’d)

No.
Chans.

Seq.
ID Description Interleaved Channel Pattern
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12 P12-13 1 Channel at 1/3fs,
4 Channels at 1/6fs

0 1 2 0 3 4 0 1 2 0 3 4

12 P12-14 2 Channels at 1/3fs,
4 Channels at 1/12fs

0 1 2 0 1 3 0 1 4 0 1 5

12 P12-15 3 Channels at 1/4fs,
3 Channels at 1/12fs

0 1 2 3 0 1 2 4 0 1 2 5

12 P12-16 1 Channel at 1/3fs,
3 Channels at 1/6fs,
2 Channels at 1/12fs

0 1 3 0 2 4 0 1 3 0 2 5

12 P12-17 6 Channels at 1/6fs 0 1 2 3 4 5 0 1 2 3 4 5

12 P12-18 1 Channel at 1/2fs,
6 Channels at 1/12fs

0 1 0 2 0 3 0 4 0 5 0 6

12 P12-19 1 Channel at 1/3fs,
2 Channels at 1/6fs,
4 Channels at 1/12fs

0 1 3 0 2 4 0 1 5 0 2 6

12 P12-20 5 Channels at 1/6fs,
2 Channels at 1/12fs

0 1 2 3 4 5 0 1 2 3 4 6

12 P12-21 1 Channel at 1/3fs,
1 Channel at 1/6fs,
6 Channels at 1/12fs

0 1 2 0 3 4 0 1 5 0 6 7

12 P12-22 2 Channels at 1/4fs,
6 Channels at 1/12fs

0 1 2 3 0 1 4 5 0 1 6 7

12 P12-23 4 Channels at 1/6fs,
4 Channels at 1/12fs

0 1 2 3 4 5 0 1 2 3 6 7

12 P12-24 3 Channels at 1/6fs,
6 Channels at 1/12fs

0 1 2 3 4 5 0 1 2 6 7 8

12 P12-25 2 Channels at 1/6fs,
8 Channels at 1/12fs

0 1 2 3 4 5 0 1 6 7 8 9

12 P12-26 12 Channel at 1/12fs 0 1 2 3 4 5 6 7 8 9 10 11

16 P16-0 1 Channel at fs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 P16-1 1 Channel at 3/4fs,
1 Channel at 1/4fs

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

16 P16-2 2 Channels at 1/2fs 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

16 P16-3 1 Channel at 3/4fs,
2 Channels at 1/8fs

0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 2

16 P16-4 1 Channel at 1/2fs,
2 Channels at 1/4fs

0 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2

16 P16-5 4 Channels at 1/4fs 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

16 P16-6 1 Channel at 1/2fs,
1 Channel at 1/4fs,
2 Channels at 1/8fs

0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 3

16 P16-7 2 Channels at 3/8fs,
2 Channels at 1/8fs

0 1 0 1 0 1 0 1 0 1 0 1 2 3 2 3

16 P16-8 1 Channel at 1/2fs,
4 Channels at 1/8fs

0 1 0 2 0 3 0 4 0 1 0 2 0 3 0 4

16 P16-9 3 Channels at 1/4fs,
2 Channels at 1/8fs

0 1 2 3 0 1 2 4 0 1 2 3 0 1 2 4

Table  7: Advanced Interleaved Data Channel Patterns (Cont’d)

No.
Chans.

Seq.
ID Description Interleaved Channel Pattern
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16 P16-10 2 Channels at 1/4fs,
4 Channels at 1/8fs

0 2 1 3 0 4 1 5 0 2 1 3 0 4 1 5

16 P16-11 1 Channel at 1/4fs,
6 Channels at 1/8fs

0 1 2 3 0 4 5 6 0 1 2 3 0 4 5 6

16 P16-12 8 Channels at 1/8fs 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

16 P16-13 2 Channels at 3/8fs,
4 Channels at 1/16fs

0 1 0 1 0 1 0 1 0 1 0 1 2 3 4 5

16 P16-14 2 Channels at 1/4fs,
4 Channels at 1/8fs

0 2 1 3 0 4 1 5 0 2 1 3 0 4 1 5

16 P16-15 2 Channels at 1/4fs,
2 Channels at 1/8fs,
4 Channels at 1/16fs

0 2 1 4 0 3 1 5 0 2 1 6 0 3 1 7

16 P16-16 4 Channels at 3/16fs,
4 Channels at 1/16fs

0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7

16 P16-17 2 Channels at 1/4fs,
8 Channels at 1/16fs

0 2 1 3 0 4 1 5 0 6 1 7 0 8 1 9

16 P16-18 6 Channels at 1/8fs,
4 Channels at 1/16fs

0 1 2 6 3 4 5 7 0 1 2 8 3 4 5 9

16 P16-19 4 Channels at 1/8fs,
8 Channels at 1/16fs

0 4 1 5 2 6 3 7 0 8 1 9 2 10 3 11

16 P16-20 2 Channels at 1/8fs,
12 Channel at 1/16fs

0 2 3 4 1 5 6 7 0 8 9 10 1 11 12 13

16 P16-21 16 Channel at 1/16fs 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

24 P24-0 2 Channels at 1/2fs 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

24 P24-1 4 Channels at 1/4fs 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

24 P24-2 2 Channels at 1/3fs,
2 Channels at 1/6fs

0 1 2 0 1 3 0 1 2 0 1 3 0 1 2 0 1 3 0 1 2 0 1 3

24 P24-3 2 Channels at 3/8fs,
2 Channels at 1/4fs

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 2 3 2 3 2 3

24 P24-4 2 Channels at 1/3fs,
4 Channels at 1/12fs

0 1 2 0 1 3 0 1 4 0 1 5 0 1 2 0 1 3 0 1 4 0 1 5

24 P24-5 2 Channels at 1/4fs,
4 Channels at 1/8fs

0 2 1 3 0 4 1 5 0 2 1 3 0 4 1 5 0 2 1 3 0 4 1 5

24 P24-6 6 Channels at 1/6fs 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

24 P24-7 2 Channels at 1/4fs,
6 Channels at 1/12fs

0 2 1 3 0 4 1 5 0 6 1 7 0 2 1 3 0 4 1 5 0 6 1 7

24 P24-8 4 Channels at 1/6fs,
4 Channels at 1/12fs

0 1 2 3 4 5 0 1 2 3 6 7 0 1 2 3 4 5 0 1 2 3 6 7

24 P24-9 8 Channels at 1/8fs 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

24 P24-10 2 Channels at 1/3fs,
8 Channels at 1/24fs

0 1 2 0 1 3 0 1 4 0 1 5 0 1 6 0 1 7 0 1 8 0 1 9

24 P24-11 2 Channels at 1/4fs,
4 Channels at 1/12fs,
4 Channels at 1/24fs

0 2 1 3 0 4 1 5 0 6 1 7 0 2 1 3 0 4 1 5 0 8 1 9

24 P24-12 4 Channels at 1/6fs,
2 Channels at 1/12fs,
4 Channels at 1/24fs

0 1 2 3 4 6 0 1 2 3 5 7 0 1 2 3 4 8 0 1 2 3 5 9
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24 P24-13 2 Channels at 1/6fs,
8 Channels at 1/12fs

0 2 3 1 4 5 0 6 7 1 8 9 0 2 3 1 4 5 0 6 7 1 8 9

24 P24-14 4 Channels at 1/6fs,
8 Channels at 1/24fs

0 1 2 3 4 5 0 1 2 3 6 7 0 1 2 3 8 9 0 1 2 3 10 11

24 P24-15 6 Channels at 1/8fs,
6 Channels at 1/24fs

0 1 2 3 4 5 6 7 0 1 2 3 4 5 8 9 0 1 2 3 4 5 10 11

24 P24-16 2 Channels at 1/6fs,
6 Channels at 1/12fs,
4 Channels at 1/24fs

0 2 3 1 4 5 0 6 7 1 8 9 0 2 3 1 4 5 0 6 7 1 10 11

24 P24-17 12 Channel at 1/12fs 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11

24 P24-18 2 Channels at 1/4fs,
12 Channel at 1/24fs

0 2 1 3 0 4 1 5 0 6 1 7 0 8 1 9 0 10 1 11 0 12 1 13

24 P24-19 2 Channels at 1/6fs,
4 Channels at 1/12fs,
8 Channels at 1/24fs

0 2 6 1 3 7 0 4 8 1 5 9 0 2 10 1 3 11 0 4 12 1 5 13

24 P24-20 10 Channel at 1/12fs,
4 Channels at 1/24fs

0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 12 13

24 P24-21 2 Channels at 1/6fs,
2 Channels at 1/12fs,
12 Channel at 1/24fs

0 2 4 1 5 6 0 3 7 1 8 9 0 2 10 1 11 12 0 3 13 1 14 15

24 P24-22 4 Channels at 1/8fs,
12 Channel at 1/24fs

0 4 1 5 2 6 3 7 0 8 1 9 2 10 3 11 0 12 1 13 2 14 3 15

24 P24-23 8 Channels at 1/12fs,
8 Channels at 1/24fs

0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 12 13 14 15

24 P24-24 6 Channels at 1/12fs,
12 Channel at 1/24fs

0 6 1 7 2 8 3 9 4 10 5 11 0 12 1 13 2 14 3 15 4 16 5 17

24 P24-25 4 Channels at 1/12fs,
16 Channel at 1/24fs

0 4 5 1 6 7 2 8 9 3 10 11 0 12 13 1 14 15 2 16 17 3 18 19

24 P24-26 24 Channels at 1/24fs 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

32 P32-0 2 Channels at 1/2fs 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

32 P32-1 2 Channels at 3/8fs,
2 Channels at 1/8fs

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 2 3 2 3 2 3 2 3

32 P32-2 4 Channels at 1/4fs 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

32 P32-3 2 Channels at 3/8fs,
4 Channels at 1/16fs

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 2 3 4 5 2 3 4 5

32 P32-4 2 Channels at 1/4fs,
4 Channels at 1/8fs

0 2 1 3 0 4 1 5 0 2 1 3 0 4 1 5 0 2 1 3 0 4 1 5 0 2 1 3 0 4 1 5

32 P32-5 8 Channels at 1/8fs 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

32 P32-6 2 Channels at 1/4fs,
2 Channels at 1/8fs,
4 Channels at 1/16fs

0 2 1 4 0 3 1 5 0 2 1 6 0 3 1 7 0 2 1 4 0 3 1 5 0 2 1 6 0 3 1 7

32 P32-7 4 Channels at 3/16fs,
4 Channels at 1/16fs

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7 4 5 6 7

32 P32-8 2 Channels at 1/4fs,
8 Channels at 1/16fs

0 2 1 3 0 4 1 5 0 6 1 7 0 8 1 9 0 2 1 3 0 4 1 5 0 6 1 7 0 8 1 9

32 P32-9 6 Channels at 1/8fs,
4 Channels at 1/16fs

0 1 2 3 4 5 6 7 0 1 2 3 4 5 8 9 0 1 2 3 4 5 6 7 0 1 2 3 4 5 8 9

Table  7: Advanced Interleaved Data Channel Patterns (Cont’d)
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32 P32-10 4 Channels at 1/8fs,
8 Channels at 1/16fs

0 4 1 5 2 6 3 7 0 8 1 9 2 10 3 11 0 4 1 5 2 6 3 7 0 8 1 9 2 10 3 11

32 P32-11 2 Channels at 1/8fs,
12 Channel at 1/16fs

0 2 3 4 1 5 6 7 0 8 9 10 1 11 12 13 0 2 3 4 1 5 6 7 0 8 9 10 1 11 12 13

32 P32-12 16 Channel at 1/16fs 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

32 P32-13 4 Channels at 3/16fs,
8 Channels at 1/32fs

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7 8 9 10 11

32 P32-14 4 Channels at 1/8fs,
8 Channels at 1/16fs

0 4 1 5 2 6 3 7 0 8 1 9 2 10 3 11 0 4 1 5 2 6 3 7 0 8 1 9 2 10 3 11

32 P32-15 4 Channels at 1/8fs,
4 Channels at 1/16fs,
8 Channels at 1/32fs

0 4 1 8 2 5 3 9 0 6 1 10 2 7 3 11 0 4 1 12 2 5 3 13 0 6 1 14 2 7 3 15

32 P32-16 8 Channels at 3/32fs,
8 Channels at 1/32fs

0 1 2 6 3 4 5 7 0 1 2 6 3 4 5 7 0 1 2 6 3 4 5 7 8 9 10 11 12 13 14 15

32 P32-17 4 Channels at 1/8fs,
16 Channel at 1/32fs

0 4 1 5 2 6 3 7 0 8 1 9 2 10 3 11 0 12 1 13 2 14 3 15 0 16 1 17 2 18 3 19

32 P32-18 12 Channel at 1/16fs,
8 Channels at 1/32fs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 16 17 18 19

32 P32-19 8 Channels at 1/16fs,
16 Channel at 1/32fs

0 8 1 9 2 10 3 11 4 12 5 13 6 14 7 15 0 16 1 17 2 18 3 19 4 20 5 21 6 22 7 23

32 P32-20 4 Channels at 1/16fs,
24 Channels at 1/32fs

0 4 5 6 1 7 8 9 2 10 11 12 3 13 14 15 0 16 17 18 1 19 20 21 2 22 23 24 3 25 26 27

32 P32-21 32 Channels at 1/32fs 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 
30 31

48 P48-0 4 Channels at 1/4fs 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 
0 1 2 3

48 P48-1 8 Channels at 1/8fs 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 
4 5 6 7

48 P48-2 4 Channels at 1/6fs,
4 Channels at 1/12fs

0 1 2 3 4 5 0 1 2 3 6 7 0 1 2 3 4 5 0 1 2 3 6 7 0 1 2 3 4 5 0 1 2 3 6 7 0 1 2 3 4 5 0 1 
2 3 6 7

48 P48-3 4 Channels at 3/16fs,
4 Channels at 1/16fs

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7 4 5 6 7 
4 5 6 7

48 P48-4 4 Channels at 1/6fs,
8 Channels at 1/24fs

0 1 2 3 4 5 0 1 2 3 6 7 0 1 2 3 8 9 0 1 2 3 10 11 0 1 2 3 4 5 0 1 2 3 6 7 0 1 2 3 8 9 0 
1 2 3 10 11

48 P48-5 4 Channels at 1/8fs,
8 Channels at 1/16fs

0 4 1 5 2 6 3 7 0 8 1 9 2 10 3 11 0 4 1 5 2 6 3 7 0 8 1 9 2 10 3 11 0 4 1 5 2 6 3 7 0 
8 1 9 2 10 3 11

48 P48-6 12 Channel at 1/12fs 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 
4 5 6 7 8 9 10 11

48 P48-7 4 Channels at 1/8fs,
12 Channel at 1/24fs

0 4 1 5 2 6 3 7 0 8 1 9 2 10 3 11 0 12 1 13 2 14 3 15 0 4 1 5 2 6 3 7 0 8 1 9 2 10 3 
11 0 12 1 13 2 14 3 15

48 P48-8 8 Channels at 1/12fs,
8 Channels at 1/24fs

0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 
3 4 5 6 7 12 13 14 15

48 P48-9 16 Channel at 1/16fs 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 
4 5 6 7 8 9 10 11 12 13 14 15

48 P48-10 4 Channels at 1/6fs,
16 Channel at 1/48fs

0 1 2 3 4 5 0 1 2 3 6 7 0 1 2 3 8 9 0 1 2 3 10 11 0 1 2 3 12 13 0 1 2 3 14 15 0 1 2 3 
16 17 0 1 2 3 18 19
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48 P48-11 4 Channels at 1/8fs,
8 Channels at 1/24fs,
8 Channels at 1/48fs

0 4 1 5 2 6 3 7 0 8 1 9 2 10 3 11 0 12 1 13 2 14 3 15 0 4 1 5 2 6 3 7 0 8 1 9 2 10 3 
11 0 16 1 17 2 18 3 19

48 P48-12 8 Channels at 1/12fs,
4 Channels at 1/24fs,
8 Channels at 1/48fs

0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 
3 4 5 6 7 16 17 18 19

48 P48-13 4 Channels at 1/12fs,
16 Channel at 1/24fs

0 4 5 1 6 7 2 8 9 3 10 11 0 12 13 1 14 15 2 16 17 3 18 19 0 4 5 1 6 7 2 8 9 3 10 11 
0 12 13 1 14 15 2 16 17 3 18 19

48 P48-14 8 Channels at 1/12fs,
16 Channel at 1/48fs

0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 12 13 14 15 0 1 2 3 4 5 6 7 16 17 18 19 0 
1 2 3 4 5 6 7 20 21 22 23

48 P48-15 12 Channel at 1/16fs,
12 Channel at 1/48fs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 16 17 18 19 0 1 2 3 
4 5 6 7 8 9 10 11 20 21 22 23

48 P48-16 4 Channels at 1/12fs,
12 Channel at 1/24fs,
8 Channels at 1/48fs

0 4 5 1 6 7 2 8 9 3 10 11 0 12 13 1 14 15 2 16 17 3 18 19 0 4 5 1 6 7 2 8 9 3 10 11 
0 12 13 1 14 15 2 20 21 3 22 23

48 P48-17 24 Channels at 1/24fs 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 
10 11 12 13 14 15 16 17 18 19 20 21 22 23

48 P48-18 4 Channels at 1/8fs,
24 Channels at 1/48fs

0 4 1 5 2 6 3 7 0 8 1 9 2 10 3 11 0 12 1 13 2 14 3 15 0 16 1 17 2 18 3 19 0 20 1 21 
2 22 3 23 0 24 1 25 2 26 3 27

48 P48-19 4 Channels at 1/12fs,
8 Channels at 1/24fs,
16 Channel at 1/48fs

0 4 12 1 5 13 2 6 14 3 7 15 0 8 16 1 9 17 2 10 18 3 11 19 0 4 20 1 5 21 2 6 22 3 7 
23 0 8 24 1 9 25 2 10 26 3 11 27

48 P48-20 20 Channels at 1/24fs,
8 Channels at 1/48fs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 
10 11 12 13 14 15 16 17 18 19 24 25 26 27

48 P48-21 4 Channels at 1/12fs,
4 Channels at 1/24fs,
24 Channels at 1/48fs

0 4 8 1 9 10 2 5 11 3 12 13 0 6 14 1 15 16 2 7 17 3 18 19 0 4 20 1 21 22 2 5 23 3 
24 25 0 6 26 1 27 28 2 7 29 3 30 31

48 P48-22 8 Channels at 1/16fs,
24 Channels at 1/48fs

0 8 1 9 2 10 3 11 4 12 5 13 6 14 7 15 0 16 1 17 2 18 3 19 4 20 5 21 6 22 7 23 0 24 
1 25 2 26 3 27 4 28 5 29 6 30 7 31

48 P48-23 16 Channel at 1/24fs,
16 Channel at 1/48fs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 
10 11 12 13 14 15 24 25 26 27 28 29 30 31

48 P48-24 12 Channel at 1/24fs,
24 Channels at 1/48fs

0 12 1 13 2 14 3 15 4 16 5 17 6 18 7 19 8 20 9 21 10 22 11 23 0 24 1 25 2 26 3 27 
4 28 5 29 6 30 7 31 8 32 9 33 10 34 11 35

48 P48-25 8 Channels at 1/24fs,
32 Channels at 1/48fs

0 8 9 1 10 11 2 12 13 3 14 15 4 16 17 5 18 19 6 20 21 7 22 23 0 24 25 1 26 27 2 28 
29 3 30 31 4 32 33 5 34 35 6 36 37 7 38 39

48 P48-26 48 Channels at 1/48fs 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

64 P64-0 4 Channels at 1/4fs 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

64 P64-1 4 Channels at 3/16fs,
4 Channels at 1/16fs

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 
0 1 2 3 4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7

64 P64-2 8 Channels at 1/8fs 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 
4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

64 P64-3 4 Channels at 3/16fs,
8 Channels at 1/32fs

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 
0 1 2 3 4 5 6 7 8 9 10 11 4 5 6 7 8 9 10 11

64 P64-4 4 Channels at 1/8fs,
8 Channels at 1/16fs

0 4 1 5 2 6 3 7 0 8 1 9 2 10 3 11 0 4 1 5 2 6 3 7 0 8 1 9 2 10 3 11 0 4 1 5 2 6 3 7 0 
8 1 9 2 10 3 11 0 4 1 5 2 6 3 7 0 8 1 9 2 10 3 11

64 P64-5 16 Channel at 1/16fs 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 
4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Parallel Data Channel Filters

The FIR Compiler provides support for processing multiple parallel datapaths with the same filter coefficients. This
feature differs from a multiple-channel implementation when it is necessary to time division multiplex (TDM) the
individual channels onto a single data stream. When processing parallel datapaths, the FIR Compiler allocates a
field of the s_axis_data_tdata and m_axis_data_tdata port to each individual datapath. See Input and
Output DATA Channels, page 20 for details of the TDATA format.

This feature can be used in conjunction with the Interleaved Data Channel Filters, page 53 feature such that
multiple data stream can be shared across multiple parallel paths and interleaved channels. For example, six data

64 P64-6 4 Channels at 1/8fs,
4 Channels at 1/16fs,
8 Channels at 1/32fs

0 4 1 8 2 5 3 9 0 6 1 10 2 7 3 11 0 4 1 12 2 5 3 13 0 6 1 14 2 7 3 15 0 4 1 8 2 5 3 9 
0 6 1 10 2 7 3 11 0 4 1 12 2 5 3 13 0 6 1 14 2 7 3 15

64 P64-7 8 Channels at 3/32fs,
8 Channels at 1/32fs

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 
4 5 6 7 8 9 10 11 12 13 14 15 8 9 10 11 12 13 14 15

64 P64-8 4 Channels at 1/8fs,
16 Channel at 1/32fs

0 4 1 5 2 6 3 7 0 8 1 9 2 10 3 11 0 12 1 13 2 14 3 15 0 16 1 17 2 18 3 19 0 4 1 5 2 
6 3 7 0 8 1 9 2 10 3 11 0 12 1 13 2 14 3 15 0 16 1 17 2 18 3 19

64 P64-9 12 Channel at 1/16fs,
8 Channels at 1/32fs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 16 17 18 19 0 1 2 3 
4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 16 17 18 19

64 P64-10 8 Channels at 1/16fs,
16 Channel at 1/32fs

0 8 1 9 2 10 3 11 4 12 5 13 6 14 7 15 0 16 1 17 2 18 3 19 4 20 5 21 6 22 7 23 0 8 1 
9 2 10 3 11 4 12 5 13 6 14 7 15 0 16 1 17 2 18 3 19 4 20 5 21 6 22 7 23

64 P64-11 4 Channels at 1/16fs,
24 Channels at 1/32fs

0 4 5 6 1 7 8 9 2 10 11 12 3 13 14 15 0 16 17 18 1 19 20 21 2 22 23 24 3 25 26 27 
0 4 5 6 1 7 8 9 2 10 11 12 3 13 14 15 0 16 17 18 1 19 20 21 2 22 23 24 3 25 26 27

64 P64-12 32 Channels at 1/32fs 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 
30 31 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 
28 29 30 31

64 P64-13 8 Channels at 3/32fs,
16 Channel at 1/64fs

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

64 P64-14 8 Channels at 1/16fs,
16 Channel at 1/32fs

0 8 1 9 2 10 3 11 4 12 5 13 6 14 7 15 0 16 1 17 2 18 3 19 4 20 5 21 6 22 7 23 0 8 1 
9 2 10 3 11 4 12 5 13 6 14 7 15 0 16 1 17 2 18 3 19 4 20 5 21 6 22 7 23

64 P64-15 8 Channels at 1/16fs,
8 Channels at 1/32fs,
16 Channel at 1/64fs

0 8 1 16 2 9 3 17 4 10 5 18 6 11 7 19 0 12 1 20 2 13 3 21 4 14 5 22 6 15 7 23 0 8 1 
24 2 9 3 25 4 10 5 26 6 11 7 27 0 12 1 28 2 13 3 29 4 14 5 30 6 15 7 31

64 P64-16 16 Channel at 3/64fs, 
16 Channel at 1/64fs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

64 P64-17 8 Channels at 1/16fs,
32 Channels at 1/64fs

0 8 1 9 2 10 3 11 4 12 5 13 6 14 7 15 0 16 1 17 2 18 3 19 4 20 5 21 6 22 7 23 0 24 
1 25 2 26 3 27 4 28 5 29 6 30 7 31 0 32 1 33 2 34 3 35 4 36 5 37 6 38 7 39

64 P64-18 24 Channels at 1/32fs,
16 Channel at 1/64fs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 
30 31 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 32 33 34 35 
36 37 38 39

64 P64-19 16 Channel at 1/32fs,
32 Channels at 1/64fs

0 16 1 17 2 18 3 19 4 20 5 21 6 22 7 23 8 24 9 25 10 26 11 27 12 28 13 29 14 30 
15 31 0 32 1 33 2 34 3 35 4 36 5 37 6 38 7 39 8 40 9 41 10 42 11 43 12 44 13 45 
14 46 15 47

64 P64-20 8 Channels at 1/32fs,
48 Channels at 1/64fs

0 8 9 10 1 11 12 13 2 14 15 16 3 17 18 19 4 20 21 22 5 23 24 25 6 26 27 28 7 29 
30 31 0 32 33 34 1 35 36 37 2 38 39 40 3 41 42 43 4 44 45 46 5 47 48 49 6 50 51 
52 7 53 54 55

64 P64-21 64 Channels at 1/64fs 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 
56 57 58 59 60 61 62 63
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streams can be shared across two parallel datapaths each implementing three interleaved data channels. Each
parallel datapath exhibits the same interleaved data sequence and the Channel ID field of the s_data_tuser and
m_data_tuser buses is shared across all paths.

In this configuration, the FIR Compiler can share control logic and coefficient memory resources between the
parallel datapaths. This offers significant resource savings over using one FIR Compiler instance per parallel
datapath.

Coefficient Reload

To minimize the resources required to implement the coefficient reload feature, it is necessary for users to re-order
the coefficients that are to be reloaded to correctly pass each coefficient to its correct storage location in the filter
structure. When “Reloadable Coefficients” have been selected, the CORE Generator software delivers an
informational text file to the project area named <component_name>_reload_order.txt, which lists the
indices of the coefficients, “Coefficient x,” in the order they should be reloaded into the filter via the reload port
“Reload index x.”

The core now also offers the facility to generate a re-ordered coefficient file, see Tab 4: Coefficient Reload, page 9.

Care must be take to correctly interpret the reload order, as it is based on the actual number of coefficients calculated
by the filter. The Coefficient Padding section of Filter Symmetry discusses how the FIR Compiler sometimes
implements a filter with more coefficients than specified. The actual coefficients calculated are displayed on the
Implementation Details tab. When the filter is configured to utilize coefficient symmetry, the user must pad the
filter response at the beginning and the end with (actual - specified)/2 zeros before applying the reload order.
Figure 21 demonstrates a padded filter response. When the filter is non-symmetric, the coefficient set must be
padded with (actual - specified) zeros at the end of the filter response before applying the reload order.

In the case of a polyphase interpolating filter utilizing coefficient symmetry, where the Symmetric Pairs technique
has been used, the coefficients must be preprocessed before being loaded into the filter. The combination of the
non-symmetric subfilters are defined as the sum or difference of two coefficient indices. When the filter
configuration requires multiple DSP slices to implement a single Multiply-Accumulate unit, the definition is
extended to include bit ranges of the source coefficients.

Figure 55 contains an example of the _reload_order.txt file, for a non-symmetric 16-tap single rate filter where
the clock rate is four times the input sample rate. 
X-Ref Target - Figure 55

Figure 55: Reload Order Text File Format Example 1

Reload index 0 = Coefficient 12
Reload index 1 = Coefficient 13
Reload index 2 = Coefficient 14
Reload index 3 = Coefficient 15
Reload index 4 = Coefficient 8
Reload index 5 = Coefficient 9
Reload index 6 = Coefficient 10
Reload index 7 = Coefficient 11
Reload index 8 = Coefficient 4
Reload index 9 = Coefficient 5
Reload index 10 = Coefficient 6
Reload index 11 = Coefficient 7
Reload index 12 = Coefficient 0
Reload index 13 = Coefficient 1
Reload index 14 = Coefficient 2
Reload index 15 = Coefficient 3
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Figure 56 contains an example for a symmetric 15-tap interpolate by 3 filter where the clock rate is six times the
input sample rate and a coefficient width of 16 bits.

Figure 57 contains an example with the same filter configuration as in Figure 56, but with a coefficient width of 30
bits (the width of the reload port is extended when the Symmetric Pairs technique is used, so in this example, the
reload port is 33 bits wide).

Contact Xilinx Technical Support if you need any assistance or guidance in implementing the reload coefficient
ordering for your specific filter implementation.

X-Ref Target - Figure 56

Figure 56: Reload Order Text File Format Example 2

Reload index 0 = Coefficient 7 
Reload index 1 = Coefficient 10
Reload index 2 = Coefficient 6 - Coefficient 8
Reload index 3 = Coefficient 9- Coefficient 11
Reload index 4 = Coefficient 6 + Coefficient 8
Reload index 5 = Coefficient 9 + Coefficient 11
Reload index 6 = Coefficient 1
Reload index 7 = Coefficient 4
Reload index 8 = Coefficient 0 - Coefficient 2
Reload index 9 = Coefficient 3 - Coefficient 5
Reload index 10 = Coefficient 0 + Coefficient 2
Reload index 11 = Coefficient 3 + Coefficient 5
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X-Ref Target - Figure 57

Reload index 0 (17 downto 0) = “00” & Coefficient 7 (15 downto 0)
Reload index 0 (32 downto 18) = Coefficient 7 (29) & Coefficient 7 (29 downto 16)
Reload index 1 (17 downto 0) = “00” & Coefficient 10 (15 downto 0)
Reload index 1 (32 downto 18) = Coefficient 10 (29) & Coefficient 10 (29 downto 16)
Reload index 2 (17 downto 0) = “00” & Coefficient 6 (15 downto 0) - 
                “00” & Coefficient 8 (15 downto 0)
Reload index 2 (32 downto 18) = Coefficient 6 (29) & Coefficient 6 (29 downto 16) - 
                Coefficient 8 (29) & Coefficient 8 (29 downto 16)
Reload index 3 (17 downto 0) = “00” & Coefficient 9 (15 downto 0) - 
                “00” & Coefficient 11 (15 downto 0)
Reload index 3 (32 downto 18) = Coefficient 9 (29) & Coefficient 9 (29 downto 16) - 
                Coefficient 11 (29) & Coefficient 11 (29 downto 16)
Reload index 4 (17 downto 0) = “00” & Coefficient 6 (15 downto 0) + 
                “00” & Coefficient 8 (15 downto 0)
Reload index 4 (32 downto 18) = Coefficient 6 (29) & Coefficient 6 (29 downto 16) + 
                Coefficient 8 (29) & Coefficient 8 (29 downto 16)
Reload index 5 (17 downto 0) = “00” & Coefficient 9 (15 downto 0) + 
                “00” & Coefficient 11 (15 downto 0)
Reload index 5 (32 downto 18) = Coefficient 9 (29) & Coefficient 9 (29 downto 16) + 
                Coefficient 11 (29) & Coefficient 11 (29 downto 16)
Reload index 6 (17 downto 0) = “00” & Coefficient 1 (15 downto 0)
Reload index 6 (32 downto 18) = Coefficient 1 (29) & Coefficient 1 (29 downto 16)
Reload index 7 (17 downto 0) = “00” & Coefficient 4 (15 downto 0)
Reload index 7 (32 downto 18) = Coefficient 4 (29) & Coefficient 4 (29 downto 16)
Reload index 8 (17 downto 0) = “00” & Coefficient 0 (15 downto 0) - 
                “00” & Coefficient 2 (15 downto 0)
Reload index 8 (32 downto 18) = Coefficient 0 (29) & Coefficient 0 (29 downto 16) - 
                Coefficient 2 (29) & Coefficient 2 (29 downto 16)
Reload index 9 (17 downto 0) = “00” & Coefficient 3 (15 downto 0) - 
                “00” & Coefficient 5 (15 downto 0)
Reload index 9 (32 downto 18) = Coefficient 3 (29) & Coefficient 3 (29 downto 16) - 
                Coefficient 5 (29) & Coefficient 5 (29 downto 16)
Reload index 10 (17 downto 0) = “00” & Coefficient 0 (15 downto 0) + 
                “00” & Coefficient 2 (15 downto 0)
Reload index 10 (32 downto 18) = Coefficient 0 (29) & Coefficient 0 (29 downto 16) + 
                 Coefficient 2 (29) & Coefficient 2 (29 downto 16)
Reload index 11 (17 downto 0) = “00” & Coefficient 3 (15 downto 0) + 
                “00” & Coefficient 5 (15 downto 0)
Reload index 11 (32 downto 18) = Coefficient 3 (29) & Coefficient 3 (29 downto 16) + 
                 Coefficient 5 (29) & Coefficient 5 (29 downto 16)

Figure 57: Reload Order Text File Format Example 3
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Coefficient Quantization

The FIR Compiler offers three coefficient quantization options: Integer Coefficient, Quantize Only, and Maximize
Dynamic Range. When the coefficients are specified using Radix 2 (binary) and 16 (hexadecimal), only the “Integer
Coefficients” option is available, as the coefficients are considered to have already been quantized. When the
coefficients are specified using integer numbers, all of the quantization options are available. When the coefficients
are specified using non-integer decimal numbers (containing fractional information), only the “Quantize Only” and
“Maximize Dynamic Range” options are available.

Integer Coefficients

The “Integer Coefficients” quantization option analyzes the coefficients and determines the minimum number of
bits required to represent the coefficients. The coefficient width must be equal to or greater than this value. When
more bits are specified than required, the coefficients are sign extended. If the user wishes to truncate the
coefficients, the “Quantize Only” option must be used.

Quantize Only

Primarily for use when the filter coefficients have been specified using non-integer real numbers, this option
quantizes the coefficients to the specified coefficient bit width. The coefficient values are rounded to the nearest
quantum using a simple round towards zero algorithm. The coefficient word is split into integer and fractional bits.
The integer width is determined by analyzing the filter coefficients to find the maximum integer value. The
remaining bits are allocated to represent the fractional portion of the coefficient values. When the specified
coefficient bit width is less than the required integer bit width, coefficients are appropriately rounded. The default
value for the Coefficient Fractional Bits parameter is set to maximize the precision of the coefficients, but it can be
reduced by the user. In this circumstance, more bits are allocated to the integer portion of the word, and the
coefficient values are sign extended appropriately. When all the specified coefficients are between 1 and -1, only a
single integer bit is required (to convey sign information), with the remainder of the coefficient word being used for
fractional bits. When the coefficient range reduces further, the fractional bit width can be specified to a value greater
than or equal to the coefficient width. See the Best Precision Fractional Length section for further explanation.

The frequency response of the quantized filter coefficients are compared to the ideal response on the Frequency
Response Tab. This enables the user to explore the trade-off between filter performance and resources by varying
the coefficient width parameter.

Maximize Dynamic Range

The user can also choose to scale the coefficients to utilize the full dynamic range provided by the coefficient bit
width by selecting the Maximize Dynamic Range option. If selected, this results in the filter coefficients being scaled
up by a common factor such that the largest coefficient (usually the center tap) is equal to the maximum
representable value using the chosen bit width, then quantized. The overall scale factor is calculated as the ratio of
the sum of the scaled and quantized coefficients to the sum of the original (ideal) coefficients. This value is
calculated by the FIR Compiler and is presented (in dB) as part of the legend text on the filter response graph, or on
the Summary page in the CORE Generator software GUI. 

The filter response plot for the quantized coefficients is scaled down by the scale factor for easy comparison against
the ideal coefficients.

Scaling the coefficients introduces a gain which should be taken into account in the user design.
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Example 1

For this example the coefficients are signed with a coefficient width of 10 bits and a coefficient fractional width of 5
bits (using the Mathworks Fix format notation Fix10_5). The specified coefficients range between -12.34 and +13.88.

Considering the coefficient bit width as integer only, 10 bits give a maximum positive value of 511 and a maximum
negative value of -512. The fractional bit width is 5 bits; this gives a maximum representable positive number of
511/(2^5)=15.96875 and a maximum representation negative number of -512/(2^5)=-16. All coefficients are scaled
by the factor 15.96875/13.88=1.1504863 (=+1.2176dB) prior to quantization. The overall scaling factor is calculated
as defined previously and displayed in the core GUI.

Example 2

For this example the coefficients are signed with a coefficient width of 18 bits and a coefficient fractional width of 19
bits, or Fix18_19. The specified coefficients range between -0.000256022 and +0.182865845.

An integer coefficient width of 18 bits gives a maximum positive value of 131071 and a maximum negative number
of -131072. Considering the fractional bits, this gives a maximum representable positive number of
131071/(2^19)=0.249998092 and a maximum representable negative number of 131072/(2^19)=0.25. The scaling
factor is determined by dividing the maximum value that can be represented (for the specified number of
coefficient bits) by the maximum coefficient value. In this case 0.249998092/0.182865845=1.367112009
(=+2.716081962dB). 

Note: While an appreciable improvement in performance can be achieved by making use of the full dynamic range
of the coefficient bit width, this is not always the case, and the user must be satisfied that any changes are acceptable
via the frequency response plot. The user must also account appropriately for any additional gain introduced by
coefficient scaling elsewhere in the application system. In many systems, signal scaling can be arbitrary and no gain
compensation is required; where scaling is necessary, it is often desirable to amalgamate gains inherent in a signal
processing chain and compensate or adjust for these gains either at the front end (for example, in an Automatic
Gain Control circuit) or the back end (for example, in a Constellation Decoder unit) of the chain. If the user wishes
not to introduce any additional scaling into the design, “Quantize Only” should be chosen.

Best Precision Fractional Length

When the “Best Precision Fractional Length” option is selected, the coefficient fractional width is set to maximize
the precision of the specified filter coefficients. As discussed in the Quantize Only section, the FIR Compiler
analyzes the filter coefficients to determine how many bits are required to represent the integer portion of the
coefficient values. All the remaining coefficient bits are then allocated to represent the fractional portion of the
coefficients. When all the specified coefficients are between 1 and -1, only a single integer bit is required. The
reminder of the coefficient word is then used for fractional bits. When the coefficient range reduces further, the
fractional bit width is specified to a value greater than or equal to the coefficient width; otherwise the coefficient
values contains redundant information that does not need to be explicitly stored. The available coefficient bits can
then be better used to increase the precision of the coefficient values. This section goes on to illustrate this concept
further. The MathWorks Fix Format notation is used, Fixword length_fractional length. The word length is
specified by the Coefficient Width parameter, and the fractional length is specified by the Coefficient Fractional Bits
parameter.
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In Figure 58 the coefficient values are represented using 18 bits. The binary point is positioned such that 17 bits are
used to represent the fractional portion of the number. An analysis of the coefficients reveals that no value has a
magnitude greater than 0.25; therefore, the upper two MSBs are a sign extension and contain redundant
information.

X-Ref Target - Figure 58

Figure 58: Coefficient Quantization Fix18_17
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In Figure 59, 16 bits are used to represent the same coefficient values to the same precision. The redundant
information has been removed, reducing the resources required to store the filter coefficients. The binary point
position has not moved. 17 bits are still effectively used to represent the fractional portion of the number, but one of
them does not need to be explicitly stored, as it is a sign extension of the stored MSB.

X-Ref Target - Figure 59

Figure 59: Coefficient Quantization Fix16_17
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In Figure 60 18 bits are specified for the coefficient width. The two additional bits can be used to increase the
precision. The binary point position has still not moved, but now, 19 bits are effectively used to represent the
fractional portion of the number, which results in an increase of the filter precision.

X-Ref Target - Figure 60

Figure 60: Coefficient Quantization Fix18_19
DS795 October 19, 2011 www.xilinx.com 69
Product Specification

http://www.xilinx.com


LogiCORE IP FIR Compiler v6.3
Output Width and Bit Growth

The full precision output width can be defined as the input data width plus the bit growth due to the application of
the filter coefficients. Bit growth from the original sample width occurs as a result of the many multiplications and
additions that form the basic function of the filter. Therefore, the accumulator result width is significantly larger
than the original input sample width. Limiting the accumulator width is desirable to save resources, both in the
filter output path (such as output buffer memory, if present) and in any subsequent blocks in the signal processing
chain. The worst case bit growth can be obtained by adding the coefficient width to the base 2 logarithm of the
number of non-zero multiplications required (rounded up); however, this does not take into account the actual
coefficient values. Equation 3 demonstrates this calculation, where B is the calculated bit growth, N is the number
for filter coefficients and Cw is the coefficient width

Equation 3

Taking the base 2 logarithm of the sum of the absolute value of all filter coefficients reveals the true maximum bit
growth for a fixed coefficient filter, and this can be used to limit the required accumulator width. Equation 4
demonstrates this calculation, where B is the calculated bit growth, N is the number for filter coefficients, and an is
nth filter coefficient.

Equation 4

The FIR Compiler automatically calculates the bit growth based on the actual coefficient values. For reloadable
filters the worst case bit growth is used. 

Equation 5 gives the cores full precision output width, where B is the calculated bit growth (given by Equation 3 or
Equation 4), Dw is the data width and Aw is the full precision output width.

Equation 5

The Coefficient (and Data) fractional width does not affect the output width calculation. The core determines the
output width without considering fractional bits. The core determines the full precision output as previously
described and then determines the output fractional width by summing the data and coefficient fractional bit
width. This value is then reduced by any output rounding. Equation 6 demonstrates this calculation, where Ow =
output width, Ofw=output fractional width, Dfw=data fractional width, Cfw=coefficient fractional width and
Aw=full precision output width.

Equation 6

Output Rounding

As mentioned in Output Width and Bit Growth, it is desirable to limit the output sample width of the filter to
minimize resource utilization in downstream blocks in a signal processing chain. For MAC implementations the
FIR Compiler includes features to limit the output sample width and round the result to the nearest representable
number within that bit width. Several rounding modes are provided to allow the user to select the preferred
trade-off between resource utilization, rounding precision, and rounding bias:

• Full Precision

• Truncation (removal of LSBs)

• Non-symmetric rounding (towards positive or negative) 

• Symmetric rounding (towards zero or infinity)

• Convergent rounding (towards odd or even)

B Cw ceil N2log[ ]+=

B ceil 2 an

n 0=

N 1–( )


 
 
 
 

log=

Aw Dw B+=

Ofw Dfw Cfw max 0 Aw Ow–,( )–+=
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In the following descriptions, the variable x is the fractional number to be rounded, with n representing the output
width (that is, the integer bits of the accumulator result) and m representing the truncated LSBs (that is, the
difference between the accumulator width and the output width). In Figure 61 through Figure 63, the direction of
inflexion on the red midpoint markers indicates the direction of rounding.

Full Precision

In Full Precision mode, no output sample bit width reduction is performed (n=accumulator width, m=0). This is the
default option.

Truncation

In Truncation mode, the m LSBs are removed from the accumulator result to reduce it to the specified output width;
the effect is the same as the MATLAB software function floor(x). This has the advantage that it can be implemented
with zero resource cost, but has the disadvantage of being biased towards the negative by 0.5.

Non-symmetric Rounding to Positive

In this rounding mode, a binary value corresponding to 0.5 is added to the accumulator result and the m LSBs are
removed; this is equivalent to the MATLAB software function floor(x+0.5). The addition can usually be done in most
filter configurations with little or no resource cost in hardware using the DSP slice features. It has the disadvantage
of being biased towards the positive by 2-(m+1).

Non-symmetric Rounding to Negative

In a modification of the preceding technique, a binary value corresponding to 0.499... is added to the accumulator
result and the m LSBs are removed; this is equivalent to the MATLAB software function ceil(x-0.5). The resource
usage advantage is the same, but the bias in this case is towards the negative by 2-(m+1). 

Symmetric Rounding to Highest Magnitude

The bias incurred during non-symmetric rounding occurs because rounding decisions at the midpoints always go
in the same direction. In symmetric rounding, the decision on which direction to round is based on the sign of the
number. For rounding towards highest magnitude, a binary value corresponding to 0.499 is added to the
accumulator result, and the inverse of the accumulator sign bit is added as a carry-in before removal of the m LSBs.
As is generally the case, there are as many positive as negative numbers; the result should not be biased in either
direction. This rounding mode is commonly used in general applications, mainly because it is equivalent to the
MATLAB software function round(x).

X-Ref Target - Figure 61

Figure 61: Non-symmetric Rounding (a) to Positive (b) to Negative

0 1 2-1-2 0 1 2-1-2 0 1 2-1-2 0 1 2-1-2

(a) (b)
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Symmetric Rounding to Zero

The implementation difference for this mode from round to highest magnitude is that the sign bit is used directly as
the carry-in (see Figure 62). There is no direct MATLAB software equivalent of this operation. One minor advantage
of rounding towards zero is that it does not cause overflow situations.

Approximation of Symmetric Rounding

One important point to note about symmetric rounding mode is that to achieve the correct result, the sign of the
accumulator must be known before the addition of the rounding constant to generate the correct carry-in. This
requires an additional processing cycle to be available. When the additional cycle is not available and the user
wishes to maintain full accuracy, a separate rounding unit must be used. (FIR Compiler calculates whether or not
this is required automatically.)

An alternative technique is available to users who wish to employ symmetric rounding but do not have a spare
cycle available, if they are willing to accept some inaccuracies. The rounding constant can be added on the initial
loading of the accumulator, and the sign bit can be checked on the penultimate accumulation cycle and added on
the final accumulation. This normally achieves the same result, but there is a small risk that the accumulated result
changes sign between the penultimate and final accumulation cycles, which causes the midpoint decision to go in
the wrong direction occasionally. 

It is important to note that while some implementations of this approximation technique rearrange the calculation
order of coefficients and data such that the smallest coefficient is used last, the FIR Compiler does not perform any
rearrangement of coefficients and data. This is significant for symmetric filters, as the centre coefficient is the final
coefficient calculated. For non-symmetric filters, the final coefficient is often very small and would be unlikely to
affect the sign of the final result. It is also important that the risk of the sign changing between the penultimate and
final accumulation cycles increases as the level of parallelism employed in the core increases. This is due to the
contribution added to the accumulation on each cycle increasing as the number of cycles per output decreases.
Therefore, it is important that users consider carefully the coefficient structure and level of parallelism they intend
to use before deciding on whether to employ approximation of symmetric rounding.

Convergent Rounding

Convergent rounding chooses the rounding direction for midpoints as either toward odd or even numbers, rather
than toward positive or negative (Figure 63). This can be advantageous, as the balance of rounding direction
decisions for midpoints is based on the probability of occurrence of odd or even numbers, which is generally equal
in most scenarios, even when the mean of the input signal moves away from zero. The function is achieved by
adding a rounding constant, as in other modes, but then checking for a particular pattern on the LSBs to detect a

X-Ref Target - Figure 62

Figure 62: Symmetric Rounding (a) to Highest Magnitude (b) to Zero

0 1 2-1-2 0 1 2-1-2 0 1 2-1-2 0 1 2-1-2
(a) (b)
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midpoint and forcing the LSB to be either zero (for round to even) or one (for round to odd) when a midpoint
occurs.

Resource Implications of Rounding

The implications with regard to resource utilization of selecting a particular rounding mode should be considered
by users. Generally, the FIR Compiler IP core attempts to integrate rounding functions with existing functions,
which usually means the accumulator portion of the circuit. However, this is not always possible. In certain
combinations of rounding mode, filter type and device family, an additional DSP slice must be used to implement
the rounding function. The most important factor to consider is the inherent hardware support for each mode in
each of the device families, but filter type and configuration also play a role. Convergent rounding requires pattern
detection support, and, therefore, this mode is only available in Virtex®-6, Virtex-7 and Kintex™-7 devices.

Table 8 indicates the combinations of filter type and rounding type for which no extra DSP slice is likely to be
required. Where all three DSP slice enabled device families are likely to support that combination of rounding mode
and filter type without an additional DSP slice, a tick mark is entered; where none of the three is likely to support
the combination without the additional DSP slice, a check mark is entered; where there is a list of families provided,
the list refers to those families that support the combination without an extra DSP slice. Support for symmetric
rounding assumes that either there is a spare cycle available, or approximation is allowed. If this is not the case, an
additional DSP slice is always required for symmetric rounding modes, regardless of filter type or family.

It is important to note that the table is indicative only, and certain combinations for which hardware support is
indicated actually require the extra DSP, and vice versa. Notable exceptions to the table include parallel
multichannel decimation with symmetric rounding (approximated), which requires an additional DSP slice.

X-Ref Target - Figure 63

Figure 63: Convergent Rounding (a) to Even (b) to Odd

Table  8: Indicative Table of Hardware Support for Rounding Modes for Particular Filter Types

Filter Type Non- 
symmetric

Symmetric 
(Infinity)

Symmetric 
(Zero) Convergent

Single Rate


Virtex-6
Virtex-7
Kintex-7

Virtex-6
Virtex-7
Kintex-7

Virtex-6
Virtex-7
Kintex-7

Half-band


Virtex-6
Virtex-7
Kintex-7

Virtex-6
Virtex-7
Kintex-7

Virtex-6
Virtex-7
Kintex-7

Interpolating without Symmetry


Virtex-6
Virtex-7
Kintex-7

Virtex-6
Virtex-7
Kintex-7

Virtex-6
Virtex-7
Kintex-7

Interpolate by 2, Odd Symmetry


Virtex-6
Virtex-7
Kintex-7

Virtex-6
Virtex-7
Kintex-7

Virtex-6
Virtex-7
Kintex-7

Interpolating with Symmetry (others)    

Interpolating Half-band


Virtex-6
Virtex-7
Kintex-7


Virtex-6
Virtex-7
Kintex-7

0 1 2-1-2 0 1 2-1-2 0 1 2-1-2 0 1 2-1-2
(a) (b)
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Multiple Column Filter implementation

The FIR Compiler can build filter implementations that span multiple DSP slice columns. The multi-column
implementation is only required when the filter parameters, specifically the number of filter coefficients and the
hardware oversampling rate (Sample Frequency to Clock Frequency ratio), result in an implementation that
requires to chain together more DSP slices than are available in a single column of the select device. Figure 64
illustrates the structures implemented.

The DSP column lengths are displayed on the Details Implementation Options page of the CORE Generator
software GUI. The implemented column lengths can be determined automatically, Multi-column Support:
Automatic, or specified by the user, Multi-column Support: Custom. The length of each implemented DSP column

Decimating, Single-channel


Virtex-6
Virtex-7
Kintex-7

Virtex-6
Virtex-7
Kintex-7

Virtex-6
Virtex-7
Kintex-7

Decimating, Multichannel


Virtex-6
Virtex-7
Kintex-7

Virtex-6
Virtex-7
Kintex-7

Virtex-6
Virtex-7
Kintex-7

Decimating Half-band


Virtex-6
Virtex-7
Kintex-7

Virtex-6
Virtex-7
Kintex-7

Virtex-6
Virtex-7
Kintex-7

X-Ref Target - Figure 64

Figure 64: Multi-column Implementations: Non-symmetric implementation, Left; Symmetric 
implementation, Right

Table  8: Indicative Table of Hardware Support for Rounding Modes for Particular Filter Types (Cont’d) 

Filter Type Non- 
symmetric

Symmetric 
(Infinity)

Symmetric 
(Zero) Convergent
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can be specified using the Column Configuration parameter. See the Detailed Implementation Options Screen
section for more details.

Resource Considerations
The number of DSP slices utilized by the FIR Compiler is primarily determined by the number of coefficients,
modified by any rate change, and the hardware oversampling rate per channel (defined by the Sample Period or the
Sample frequency to Clock frequency ratio divided by the number of channels). Users should also be aware that
Data and Coefficient Bit Width and Output Rounding Selection can also affect the DSP slice usage and are discussed
in the following sections.

Tab 3: Implementation Details of the CORE Generator software GUI displays the core DSP slice usage given all the
core parameters.

Data and Coefficient Bit Width

When the FIR Compiler is configured to implement the Multiply-Accumulate filter architectures, the DSP slice
resource usage is influenced by the data and coefficient width specified. When the data and coefficient widths are
specified to be greater than the input width of the DSP slice for the given device family, the core uses multiple DSP
slice columns to implement the filter. Table 9 provides a guide to the number of DSP columns that are required for
various combinations of data and coefficient widths. The widths used are that of the specification values and not
that of the AXI-Stream data bus widths.

The Data Width threshold is further reduced by a bit when coefficient symmetry is being utilized by the core, see
Filter Symmetry, page 35.

The Coefficient Width threshold is further reduced by a bit when symmetric pairs are being utilized by the core, see
Polyphase Interpolator Exploiting Symmetric Pairs, page 42.

Table  9: DSP Slice Column Usage for Given Data and Coefficient Widths

Family
Data Width Coefficient Width Number of 

DSP Slice 
ColumnsUnsigned Signed Unsigned Signed

Spartan-6 <=17 <=18 <=17 <=18 1

>17 >18 <=17 <=18 2

<=17 <=18 >17 >18 2

>17 >18 >17 >18 4

Virtex-6, Virtex-7, Kintex-7(1)

1. The data/coefficient widths at which Virtex-6, Virtex-7, Kintex-7 FPGA implementations transition to multi-column implementations might be lower than
that shown based on the number of filter coefficients. This ensures that the accumulator width does not exceed 48 bits, thereby avoiding overflow.

<=24 <=25 <=17 <=18 1

<=17 <=18 <=24 <=25 1

>24 >25 <=17 <=18 2

<=17 <=18 >24 >25 2

>17 >18 <=24 <=25 2

<=24 <=25 >17 >18 2

>24 >25 >17 >18 4

>17 >18 >24 >25 4
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Output Rounding Selection

The selected output rounding mode might cause additional DSP slice resources to be used. See the Output
Rounding section for more details.

Multiple Channel vs. Parallel Datapaths

The Interleaved Data Channel Filters and Parallel Data Channel Filters features both offer the facility to process
multiple input sample streams but using different interfaces. A multichannel interface requires the multiple input
streams to be time division multiplexed (TDM) into a single core input, whereas the Parallel Datapaths interface
provides an individual core input for each input stream. The choice of interface can influence the resources used by
the core. In general, the multichannel implementation uses less DSP slice resources, but under some circumstances
this is not the case. The following example demonstrates such a situation. It might also be desirable to consider the
Parallel Datapaths implementation when implementing filter where a large number of DSP slices is required.

Example 1

Consider an 8-tap single rate filter that is to process four 12.5 MHz input streams with a clock frequency of 100
MHz.

Multichannel implementation:

100 MHz/12.5 MHz=8 clock cycles per input sample. Shared between the four input streams, 8/4=2, gives a
hardware oversampling rate of 2. The 8 filter coefficients must be processed in 2 clock cycles. This gives 8/2=4 DSP
slices, where the filter processes the first 4 coefficients on the first clock cycle and the remaining 4 coefficients on the
second clock cycle. The two partial products must be summed together, so an additional accumulator DSP slice is
required. This gives a total of 5 DSP slices.

Parallel Datapaths:

100 MHz/12.5 MHz=8 clock cycles per input sample. Each input stream can use the full 8 clock cycles to process the
8 filter coefficients. This gives 8/8=1 multiply-accumulate DSP slice. The core provides four input streams, each
using 1 DSP slice. This gives a total of 4 DSP slices.

This demonstrates that the Parallel Datapath implementation offers a more efficient implementation.

If the input sample frequency was increased to 25 MHz per channel, this would not be the case, illustrated as
follows.

Multichannel implementation:

8 taps/(100 MHz/25 MHz/4)=8 DSP slices, no accumulator required.

Parallel Datapaths:

8 taps/(100 MHz/25 MHz)=2 DSP slices, plus 1 accumulator DSP slice gives 3 DSP slices per path. A total of 12 DSP
slices are required.
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Performance and Resource Utilization
This section provides indicative resource utilization figures for limited example filters. To be concise, codes are used
in these tables to indicate particular configuration options; these are detailed in the following sections.

The maximum clock frequency results were obtained by double-registering input and output ports (using IOB
flip-flops) to reduce dependence on I/O placement. The inner level of registers used a separate clock signal to
measure the path from the input registers to the first output register through the core.

The resource usage results do not include the preceding “characterization” registers and represent the true logic
used by the core. LUT counts include SRL32s.

The map options used were: "map -ol high"

The par options used were: "par -ol high"

Clock frequency does not take clock jitter into account and should be derated by an amount appropriate to the clock
source jitter specification.

The maximum achievable clock frequency and the resource counts can also be affected by other tool options,
additional logic in the FPGA, using a different version of Xilinx tools, and other factors
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Resource Utilization for Virtex-7 FPGA

Table 10 provides characterization data for Virtex-7 FPGAs using a XC7VX330T-1FF1157 and ISE software speed file
version “ADVANCED 1.01c 2011-08-29.” Generally the overall filter performance is within 10% of the DSP slice
clock rating for the given device speed grade, and often reaches this clock rate (although the Speed setting might be
required to achieve this in some cases). Some fully parallel cases can be slower due to routing congestion. Block
RAM counts quoted are for 18k blocks, which are often amalgamated into pairs for mapping to 36k locations where
possible; therefore customers should bear this in mind if comparing these values with map results for their
particular configuration

Table  10: Resource Utilization in Virtex-7 FPGAs

 Filter Type
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SingleRate 1 366 1 366 18 18 A 1 1 65 458

SingleRate 1 4 4 1 18 18 A 4 0 58 547

SingleRate 1 20 1 5 18 18 A 5 0 157 524

SingleRate 1 20 3 5 18 18 A 5 0 175 537

SingleRate 1 27 1 1 18 18 A 27 0 314 501

SingleRate 1 21 Y 2 1 17 18 A 11 0 261 523

Decimation 6 34 Y 1 3 16 16 A 1 0 146 534

Decimation 2 69 Y 1 18 16 16 A 1 0 194 521

SingleRate 1 19 Y 6 1 16 16 A 10 0 171 492

SingleRate 1 32 1 32 16 16 A 1 0 104 543

SingleRate 1 32 1 4 16 16 A 9 0 193 547

SingleRate 1 32 1 1 16 16 A 32 0 304 506

SingleRate 1 32 Y 1 32 16 16 A 1 0 125 547

SingleRate 1 32 Y 1 4 16 16 A 5 0 249 524

SingleRate 1 32 Y 1 1 16 16 A 16 0 502 492

SingleRate 1 32 3 4 16 16 A 9 0 207 547

SingleRate 1 32 3 1 16 16 A 32 0 304 515

SingleRate 1 32 Y 3 4 16 16 A 5 0 259 542

SingleRate 1 32 Y 3 1 16 16 A 16 0 276 473

Interpolation 5 32 1 20 16 16 A 3 0 105 547

Interpolation 5 32 3 20 16 16 A 3 0 155 547

Interpolation 5 61 Y 3 5 16 16 A 8 0 344 517

Interpolation 5 61 Y 3 20 16 16 A 3 0 243 524

Interpolation 2 31 Y Y 1 8 16 16 A 2 0 154 547
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Interpolation 5/3 64 3 10 16 16 A 4 0 212 499

Decimation 5 32 1 4 16 16 A 3 0 136 538

Decimation 5 32 3 4 16 16 A 3 0 257 525

Decimation 5 64 3 1 16 16 A 8 0 392 507

Decimation 5 64 3 4 16 16 A 3 0 431 530

Decimation 5 64 3 13 16 16 A 1 1 225 458

Decimation 2 31 Y Y 1 3 16 16 A 3 0 160 526

Decimation 3/5 64 3 10 16 16 A 3 0 228 469

Interpolation 16 288 Y 16 16 18 18 A 18 3 890 451

Interpolation 8 144 Y 8 32 18 18 A 6 0 640 476

Interpolation 36/25 144 2 6 18 18 A 1 3 111 458

Interpolation 2 11 Y Y 2 6 17 18 A 1 0 166 546

Interpolation 2 15 Y Y 2 12 16 18 A 1 0 167 503

Interpolation 2 251 Y 2 24 16 18 A 7 0 530 520

Single Rate4 1 32 1 4 16 16 A 8 0 120 534

Interpolation4 5 32 1 20 16 16 A 2 0 108 547

Decimation4 5 32 1 4 16 16 A 2 0 133 533

Notes: 
1. Clock rates determined using a -1 speed grade.
2. Clocks per sample per channel uses the input sample rate as the basis for all filter types.
3. Clock frequency does not take clock jitter into account and should be derated by an amount appropriate to the clock source jitter 

specification.
4. Implemented using the Transpose Multiply-Accumulate architecture.

Table  10: Resource Utilization in Virtex-7 FPGAs (Cont’d)

 Filter Type
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Resource Utilization for Kintex-7 FPGA

Table 11 provides characterization data for Kintex-7 FPGAs using a XC7K160T-1FBG676 and ISE software speed file
version “ADVANCED 1.02a 2011-08-29.” Generally the overall filter performance is within 10% of the DSP slice
clock rating for the given device speed grade, and often reaches this clock rate (although the Speed setting might be
required to achieve this in some cases). Some fully parallel cases can be slower due to routing congestion. Block
RAM counts quoted are for 18k blocks, which are often amalgamated into pairs for mapping to 36k locations where
possible; therefore customers should bear this in mind if comparing these values with map results for their
particular configuration

Table  11: Resource Utilization in Kintex-7 FPGAs

 Filter Type
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SingleRate 1 366 1 366 18 18 A 1 1 63 458

SingleRate 1 4 4 1 18 18 A 4 0 58 547

SingleRate 1 20 1 5 18 18 A 5 0 157 547

SingleRate 1 20 3 5 18 18 A 5 0 180 547

SingleRate 1 27 1 1 18 18 A 27 0 314 499

SingleRate 1 21 Y 2 1 17 18 A 11 0 268 506

Decimation 6 34 Y 1 3 16 16 A 1 0 151 547

Decimation 2 69 Y 1 18 16 16 A 1 0 196 521

SingleRate 1 19 Y 6 1 16 16 A 10 0 171 531

SingleRate 1 32 1 32 16 16 A 1 0 104 547

SingleRate 1 32 1 4 16 16 A 9 0 192 547

SingleRate 1 32 1 1 16 16 A 32 0 302 496

SingleRate 1 32 Y 1 32 16 16 A 1 0 125 536

SingleRate 1 32 Y 1 4 16 16 A 5 0 239 547

SingleRate 1 32 Y 1 1 16 16 A 16 0 472 497

SingleRate 1 32 3 4 16 16 A 9 0 207 547

SingleRate 1 32 3 1 16 16 A 32 0 303 496

SingleRate 1 32 Y 3 4 16 16 A 5 0 264 520

SingleRate 1 32 Y 3 1 16 16 A 16 0 276 494

Interpolation 5 32 1 20 16 16 A 3 0 108 547

Interpolation 5 32 3 20 16 16 A 3 0 154 518

Interpolation 5 61 Y 3 5 16 16 A 8 0 363 533

Interpolation 5 61 Y 3 20 16 16 A 3 0 244 520

Interpolation 2 31 Y Y 1 8 16 16 A 2 0 158 547
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Interpolation 5/3 64 3 10 16 16 A 4 0 204 522

Decimation 5 32 1 4 16 16 A 3 0 137 545

Decimation 5 32 3 4 16 16 A 3 0 257 513

Decimation 5 64 3 1 16 16 A 8 0 392 496

Decimation 5 64 3 4 16 16 A 3 0 431 500

Decimation 5 64 3 13 16 16 A 1 1 218 458

Decimation 2 31 Y Y 1 3 16 16 A 3 0 149 547

Decimation 3/5 64 3 10 16 16 A 3 0 229 485

Interpolation 16 288 Y 16 16 18 18 A 18 3 889 458

Interpolation 8 144 Y 8 32 18 18 A 6 0 644 497

Interpolation 36/25 144 2 6 18 18 A 1 3 111 458

Interpolation 2 11 Y Y 2 6 17 18 A 1 0 165 530

Interpolation 2 15 Y Y 2 12 16 18 A 1 0 164 547

Interpolation 2 251 Y 2 24 16 18 A 7 0 535 503

Single Rate4 1 32 1 4 16 16 A 8 0 120 538

Interpolation4 5 32 1 20 16 16 A 2 0 111 547

Decimation4 5 32 1 4 16 16 A 2 0 133 547

Notes: 
1. Clock rates determined using a -1 speed grade.
2. Clocks per sample per channel uses the input sample rate as the basis for all filter types.
3. Clock frequency does not take clock jitter into account and should be derated by an amount appropriate to the clock source jitter 

specification.
4. Implemented using the Transpose Multiply-Accumulate architecture.

Table  11: Resource Utilization in Kintex-7 FPGAs (Cont’d)
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Resource Utilization for Virtex-6 FPGA

Table 12 provides characterization data for Virtex-6 FPGAs using a XC6VLX75T-1FF784 and ISE software speed file
version “PRODUCTION 1.15 2011-08-29.” Generally the overall filter performance is within 10% of the DSP slice
clock rating for the given device speed grade, and often reaches this clock rate (although the Speed setting might be
required to achieve this in some cases). Some fully parallel cases can be slower due to routing congestion. Block
RAM counts quoted are for 18k blocks, which are often amalgamated into pairs for mapping to 36k locations where
possible; therefore customers should bear this in mind if comparing these values with map results for their
particular configuration.

Table  12: Resource Utilization in Virtex-6 FPGAs

 Filter Type
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SingleRate 1 366 1 366 18 18 A 1 1 67 450

SingleRate 1 4 4 1 18 18 A 4 0 58 472

SingleRate 1 20 1 5 18 18 A 5 0 121 472

SingleRate 1 20 3 5 18 18 A 5 0 145 472

SingleRate 1 27 1 1 18 18 A 27 0 313 472

SingleRate 1 21 Y 2 1 17 18 A 11 0 250 472

Decimation 6 34 Y 1 3 16 16 A 1 0 147 472

Decimation 2 69 Y 1 18 16 16 A 1 0 191 472

SingleRate 1 19 Y 6 1 16 16 A 10 0 171 472

SingleRate 1 32 1 32 16 16 A 1 0 74 472

SingleRate 1 32 1 4 16 16 A 9 0 164 472

SingleRate 1 32 1 1 16 16 A 32 0 304 472

SingleRate 1 32 Y 1 32 16 16 A 1 0 91 472

SingleRate 1 32 Y 1 4 16 16 A 5 0 216 472

SingleRate 1 32 Y 1 1 16 16 A 16 0 488 472

SingleRate 1 32 3 4 16 16 A 9 0 174 472

SingleRate 1 32 3 1 16 16 A 32 0 304 472

SingleRate 1 32 Y 3 4 16 16 A 5 0 230 472

SingleRate 1 32 Y 3 1 16 16 A 16 0 276 472

Interpolation 5 32 1 20 16 16 A 3 0 75 472

Interpolation 5 32 3 20 16 16 A 3 0 121 472

Interpolation 5 61 Y 3 5 16 16 A 8 0 304 472

Interpolation 5 61 Y 3 20 16 16 A 3 0 209 472

Interpolation 2 31 Y Y 1 8 16 16 A 2 0 122 472
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Interpolation 5/3 64 3 10 16 16 A 4 0 175 472

Decimation 5 32 1 4 16 16 A 3 0 104 472

Decimation 5 32 3 4 16 16 A 3 0 228 472

Decimation 5 64 3 1 16 16 A 8 0 386 472

Decimation 5 64 3 4 16 16 A 3 0 403 472

Decimation 5 64 3 13 16 16 A 1 1 219 450

Decimation 2 31 Y Y 1 3 16 16 A 3 0 155 472

Decimation 3/5 64 3 10 16 16 A 3 0 226 472

Interpolation 16 288 Y 16 16 18 18 A 18 3 839 442

Interpolation 8 144 Y 8 32 18 18 A 6 0 643 472

Interpolation 36/25 144 2 6 18 18 A 1 3 110 450

Interpolation 2 11 Y Y 2 6 17 18 A 1 0 116 472

Interpolation 2 15 Y Y 2 12 16 18 A 1 0 124 472

Interpolation 2 251 Y 2 24 16 18 A 7 0 503 472

Single Rate4 1 32 1 4 16 16 A 8 0 88 472

Interpolation4 5 32 1 20 16 16 A 2 0 84 472

Decimation4 5 32 1 4 16 16 A 2 0 96 472

Notes: 
1. Clock rates determined using a -1 speed grade.
2. Clocks per sample per channel uses the input sample rate as the basis for all filter types.
3. Clock frequency does not take clock jitter into account and should be derated by an amount appropriate to the clock source jitter 

specification.
4. Implemented using the Transpose Multiply-Accumulate architecture.

Table  12: Resource Utilization in Virtex-6 FPGAs (Cont’d)

 Filter Type
R

at
e

# 
C

o
ef

fi
ci

en
ts

S
ym

m
et

ri
c

H
al

f-
b

an
d

R
el

o
ad

ab
le

C
h

an
n

el
s

C
lo

ck
s/

S
am

p
le

 /
C

h
an

n
el

In
p

u
t 

W
id

th

C
o

ef
fi

ci
en

t 
W

id
th

A
re

a/
S

p
ee

d

D
S

P
48

B
lo

ck
 R

A
M

L
U

T-
F

F
 p

ai
rs

C
lo

ck
 F

m
ax

 (
M

H
z)
DS795 October 19, 2011 www.xilinx.com 83
Product Specification

http://www.xilinx.com


LogiCORE IP FIR Compiler v6.3
Resource Utilization for Spartan-6 FPGA

Table 13 provides characterization data for Spartan-6 FPGAs using a XC6SLX150-2FGG484 and ISE software speed
file version “PRODUCTION 1.20c 2011-08-29.” Generally the overall filter performance is within 10% of the DSP
slice clock rating for the given device speed grade, and often reaches this clock rate (although the Speed setting
might be required to achieve this in some cases). Some fully parallel cases can be slower due to routing congestion.

Table  13: Resource Utilization in Spartan-6 FPGAs

 Filter Type
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SingleRate 1 366 1 366 18 18 A 1 1 89 260

SingleRate 1 4 4 1 18 18 A 4 0 58 293

SingleRate 1 20 1 5 18 18 A 5 0 135 299

SingleRate 1 20 3 5 18 18 A 5 0 173 312

SingleRate 1 27 1 1 18 18 A 27 0 329 284

SingleRate 1 21 Y 2 1 17 18 A 11 0 217 307

Decimation 6 34 Y 1 3 16 16 A 1 0 153 320

Decimation 2 69 Y 1 18 16 16 A 1 0 183 309

SingleRate 1 19 Y 6 1 16 16 A 10 0 182 317

SingleRate 1 32 1 32 16 16 A 1 0 86 317

SingleRate 1 32 1 4 16 16 A 9 0 163 304

SingleRate 1 32 1 1 16 16 A 32 0 313 222

SingleRate 1 32 Y 1 32 16 16 A 1 0 104 304

SingleRate 1 32 Y 1 4 16 16 A 5 0 201 301

SingleRate 1 32 Y 1 1 16 16 A 16 0 475 273

SingleRate 1 32 3 4 16 16 A 9 0 172 294

SingleRate 1 32 3 1 16 16 A 32 0 302 217

SingleRate 1 32 Y 3 4 16 16 A 5 0 197 319

SingleRate 1 32 Y 3 1 16 16 A 16 0 282 275

Interpolation 5 32 1 20 16 16 A 3 0 85 327

Interpolation 5 32 3 20 16 16 A 3 0 122 310

Interpolation 5 61 Y 3 5 16 16 A 8 0 294 292

Interpolation 5 61 Y 3 20 16 16 A 3 0 200 319

Interpolation 2 31 Y Y 1 8 16 16 A 3 0 120 323

Interpolation 5/3 64 3 10 16 16 A 4 0 179 333

Decimation 5 32 1 4 16 16 A 3 0 101 311

Decimation 5 32 3 4 16 16 A 3 0 214 275

Decimation 5 64 3 1 16 16 A 8 0 337 299

Decimation 5 64 3 4 16 16 A 3 0 375 278

Decimation 5 64 3 13 16 16 A 1 0 210 260
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Decimation 2 31 Y Y 1 3 16 16 A 3 0 160 308

Decimation 3/5 64 3 10 16 16 A 3 0 216 300

Interpolation 16 288 Y 16 16 18 18 A 18 1 854 260

Interpolation 8 144 Y 8 32 18 18 A 6 0 632 274

Interpolation 36/25 144 2 6 18 18 A 1 1 103 260

Interpolation 2 11 Y Y 2 6 17 18 A 1 0 116 300

Interpolation 2 15 Y Y 2 12 16 18 A 1 0 117 301

Interpolation 2 251 Y 2 24 16 18 A 7 0 451 286

Single Rate4 1 32 1 4 16 16 A 8 0 100 277

Interpolation4 5 32 1 20 16 16 A 2 0 76 327

Decimation4 5 32 1 4 16 16 A 2 0 99 315

Notes: 
1. Clock rates determined using a -2 speed grade.
2. Clocks per sample per channel uses the input sample rate as the basis for all filter types.
3. Clock frequency does not take clock jitter into account and should be derated by an amount appropriate to the clock source jitter 

specification.
4. Implemented using Transpose Multiply-Accumulate architecture.

Table  13: Resource Utilization in Spartan-6 FPGAs (Cont’d)
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List of Acronyms
Acronym Definition

AXI Advanced eXtensible Interface

DA Distributed Arithmetic

dB decibel

DSP Digital Signal Processing

FDM Frequency Division Multiplexed

FFT Fast Fourier Transform

FIR Finite Impulse Response

FPGA Field Programmable Gate Array

GUI Graphical User Interface

I In-Phase

IES Incisive Enterprise Simulator

IFIR Interpolated Finite Impulse Response

IP Intellectual Property

ISE Integrated Software Environment

ISim ISE Simulator

LSB Least Significant Bit

LUT Lookup Table

MAC Multiply-Accumulate

MSB Most Significant Bit

ND New Data

PDA Parallel Distributed Arithmetic

ps picoseconds

PSC Parallel-to-Serial Shift Register

Q Quadrature

RAM Random Access Memory

SDA Serial Distributed Arithmetic

TDM Time Division Multiplex or Time Domain Multiplex

TSB Time-Skew Buffer

VHDL VHSIC Hardware Description Language (VHSIC an acronym for Very High-Speed Integrated Circuits)

XCO Xilinx CORE Generator core source file

XST Xilinx Synthesis Technology
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Support 
Xilinx provides technical support at www.xilinx.com/support for this LogiCORE IP product when used as
described in the product documentation. Xilinx cannot guarantee timing, functionality, or support of product if
implemented in devices that are not defined in the documentation, if customized beyond that allowed in the
product documentation, or if changes are made to any section of the design labeled DO NOT MODIFY. 

See the IP Release Notes Guide (XTP025) for further information on this core. On the first page there is a link to “All
DSP IP.” The relevant core can then be selected from the displayed list.

For each core, there is a master Answer Record that contains the Release Notes and Known Issues list for the core
being used. The following information is listed for each version of the core:

• New Features

• Bug Fixes

• Known Issues

Ordering Information
The FIR Compiler core is provided under the terms of the Xilinx End User License Agreement and can be generated
using the Xilinx CORE Generator system. The CORE Generator system is shipped with Xilinx ISE Design Suite
software.

A simulation evaluation license for the core is shipped with the CORE Generator system. To access the full
functionality of the core, including FPGA bitstream generation, a full license must be obtained from Xilinx. For
more information, visit the core page. 

Contact your local Xilinx sales representative for pricing and availability of additional Xilinx LogiCORE IP modules
and software. Information about additional Xilinx LogiCORE IP modules is available on the Xilinx IP Center.

Revision History
The following table shows the revision history for this document.

Date Version Revision

09/21/10 1.0 First release of the core with AXI interface support. The previous release of this document was 
ds534.

12/14/10 1.1 Release for 12.4 with additional features.

03/01/11 1.2 Support added for Virtex-7 and Kintex-7. ISE Design Suite 13.1. 

10/19/11 1.3 ISE Design Suite 13.3 with additional features: 
• Advanced Interleaved Channels (Configurable Bandwidth support)
• Multi-column support for symmetric filter implementations
• Re-introduction of Hilbert Transform, Single Rate Half-Band and Interpolated filters
• C Model
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Notice of Disclaimer
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To
the maximum extent permitted by applicable law: (1) Materials are made available “AS IS” and with all faults, Xilinx hereby
DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT
LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR
PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of
liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including
your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss
of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such
damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no
obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent.
Certain products are subject to the terms and conditions of the Limited Warranties which can be viewed at
http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in a license issued to
you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe
performance; you assume sole risk and liability for use of Xilinx products in Critical Applications:
http://www.xilinx.com/warranty.htm#critapps.
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